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Abstract

Cornelia de Lange Syndrome (CdLS) is a choesinopathy: a severe genetic disorder caused by mutations in the
cohesin complex genes. The phenotype is characterized by typical facial dysmorphism, growth impairment and
multiorgan abnormalities including brain alterations. Wnt pathway is known to play a fundamental role in central
nervous system development and it has been shown that Wnt pathway is disrupted in CdLS animal models and
patients cells. In this review we investigate the possible link between Wnt pathway disruption and brain abnormalities
in Cornelia de Lange Syndrome as such molecular impairment could lead to an abnormal embryonic development
resulting in brain abnormalities (i.e. microcephaly, cerebellar hypoplasia, abnormal cortical development) in patients
with Cornelia de Lange Syndrome.
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Background
CdLS is a choesinopathy disorder caused by heterozygous
or X-linked mutations in the cohesion core subunits
SMC1A, SMC3, RAD21, or in cohesion components
NIPBL and HDAC8 [1–6]. CdLS manifests with typical
facial dysmorphism (hirsute forehead, arched eyebrows
with synophyrs, short nose with depressed nasal bridge,
anteverted nares, long and smooth philtrum, thin lips,
downwards turning corners of the mouth), growth impair-
ment and multiorgan abnormalities including limb anom-
alies, congenital heart defects, gastrointestinal disease and
brain alterations. Developmental disability invariably af-
fects patients with CdLS even if about 20-30% of patients
show mild impairment. Even if clinical signs of the neuro-
developmental impairment of multifactorial origin might
be related to anatomical brain abnormalities, only few
studies report brain features.

Wnts are secreted glycoproteins that activate signaling
cascades involved in cell fate specification, polarity and
migration, implicated in many aspects of embryo devel-
opment. Wnt genes and signaling proteins are known to
play a major role in fetal brain development [7, 8] and
Wnt signaling pathway alterations have been associated
to a number of central nervous system diseases [7].
The present review focuses on brain findings of pa-

tients affected by CdLS, exploring a possible correlation
with Wnt signaling.

Brain development and Wnt pathway
The human central nervous system (brain and spinal
cord) is formed during the process known as neurulation
that occurs between 20 and 27 days post-fertilization [9].
In the previous developmental phase, called gastrulation,
the ectoderm is formed, which will thicken in response
to an array of molecular signals released by the under-
lying notochord, originating the neural plate. This plate
of ectodermal cells will form the neural tube by elevat-
ing, juxtaposing and fusing along the midline, thanks to
a process of folding up on its anterior–posterior axis. At
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the end of the fusion along the midline, a hollow tube
forms, called the neural tube [10].
During gastrulation, as the neural plate is forming,

neural crest cells are organized at the edge of the pro-
spective neural plate [11]. Neural crest cells are initially lo-
cated within the dorsal part of the neural tube, at the edge
of the neural plate, bordering between neuronal and non-
neuronal ectoderm; during neural tube closure, neural
crest cells delaminate from the dorsal neural tube along
the embryo body axis and migrate, differentiating into
multiple cell types, such as neurons and glial cells of the
peripheral nervous system and structures such as cranial
bones, cranial cartilage, dentin and dental pulp [12, 13].
Just before neural tube closure, the anterior extremity of

the tube begins to expand forming the three primary brain
vesicles [9]. The prosencephalon is the most anterior of
these vesicles, which will become the forebrain. The mid-
dle vesicle is called the mesencephalon and represents the
precursor of midbrain structures. The rhombencephalon
is the most posterior vesicle and represents the embryonic
hindbrain [9]. These three primary vesicles are visible ap-
proximately at day 28 post-fertilization. The prosenceph-
alon and rhomboencephalon soon divide forming the
secondary brain vesicles: telencephalon and diencephalon
rostrally and metencephalon and myelencephalon caud-
ally. All these structures are visible by day 49 post-
fertilization [9]. Cerebral hemispheres develop because of
sagittal folding and division of the telencephalon and rap-
idly expand and completely cover the diencephalon; the
telencephalon augments in dimension for the active for-
mation and differentiation of neurons and glia: from the
germinal neuroepithelium, stem cells give rise to neurons
and non-neuronal cells, thereafter immature neurons
migrate to colonize the forebrain, midbrain, hindbrain in
different spatial distribution of cortical layers, nuclei, and
ganglia. At nine weeks of gestation, brain lobes are
formed, and then sulci and gyri develop, together with the
formation of the corpus callosum, representing the inter-
commissural connections [9]. The cortex and medullary
center develop, as well as the basal ganglia, lamina termi-
nalis, hippocampus, corpus striatum and olfactory system.
The diencephalon will form the thalamus, epithal-

amus, hypothalamus, subthalamus, neurohypophysis,
pineal gland, retina, optic nerve and mamillary bodies.
The mesencephalon develops into the lamina quadri-

gemina, the cerebral peduncles and the cerebral
aqueduct. Pons and cerebellum originate from the met-
encephalon whereas the medulla oblongata develops
from the myelencephalon.
To warrant a proper formation and function of the

central nervous system, the complex developmental
process described above must be coordinated by the
developmental activity of a vast number of genes and
proteins. The Wnt pathway has been shown to intervene

in all steps of brain developmental process [8]: for
example Wnt signals are involved in generation and
migration of neural crest cells [12–15] implicated in the
cranio-facial development [16–19]; Wnt proteins provide
positional information within the embryo for anterior-
posterior axis specification of the neural plate [20],
regulating morphogenesis of the neural tube [21–23]:
anterior-posterior specification of the neural plate and
neural tube is dependent on graded Wnt signaling [8]
requiring an inhibition of Wnt signaling in the anterior
zone for proper anterior-posterior patterning of the early
central nervous system development [8]; Wnt signals
also intervene in neuronal cells development participat-
ing in neuron formation from the neuronal stem cells,
neuronal proliferation and specification, neuronal migra-
tion and maturation including axon growth, dendrites
formation and synaptogenesis [7, 8].
Expression of the Wnt genes during brain develop-

ment is summarized in Fig. 1, with an overlapping
spatial and temporal pattern [8].
In terms of malformation, for example, Wnt1−/− em-

bryos lack the entire midbrain and cerebellum, which
originates from the anterior metencephalon [24, 25];
moreover, it has been shown that inactivation of β-catenin
gene by Wnt1-Cre-mediated deletion results in dramatic
brain malformation and failure of craniofacial develop-
ment [26].

Brain abnormalities in CdLS
Microcephaly has been frequently reported in patients
affected by CdLS, also associated with brachycephaly or
plagiocephaly, both in infants and adults. No large co-
hort studies are available regarding type and prevalence
of central nervous system anomalies in infants with
CdLS (see for example Kline et al. 1993 and Selicorni et
al. 2007 [27, 28]) and even fewer data are available in fe-
tuses (see for example Avagliano et al. 2017 [29]); hence
most information is related to single case reports. Paren-
chymal volume loss may affect both white and gray mat-
ter, especially involving midline: frontal or temporal
lobes hypoplasia have been reported in possible associ-
ation with hypoplasia of corpus callosum, pituitary, ven-
tral pons and cerebellar vermian structures [30–39].
The frequency of the observed brain abnormalities in

the reported cases are summarized in Table 1.
Corpus callosum abnormalities have been resolved by

magnetic resonance imaging (MRI) and described as short
or thin or hypoplastic [37, 39] (Fig. 2). Such abnormalities
have also been reported at autopsy showing thin corpus
callosum with rudimentary septum pellucidum in a case
of CdLS associated with septo-optic dysplasia [40].
Mild dilatation of the ventricles system could be

appreciated by MRI [39, 41, 42] or noted by neuropatho-
logical investigation [43] with observation of moderated
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dilatation of third [43] or fourth ventricle [33, 40], cere-
bral aqueduct and central canal of the spine [40].
Pituitary abnormalities have been reported including: re-

duction in size of the gland [39, 40, 44], cysts [39, 43, 45]
and tumors such as microadenoma [39] or one case of in-
vasion of the hypophysis by suprasellar germinoma [46].
In this last case the hypophysis was large. Other reports
showed an unremarkable pituitary gland [31, 36–38]. His-
tologically, few cases were reported showing absence of
basophilic cells [30, 40, 43].
Brain stem abnormalities have been observed radio-

logically with volume loss predominantly involving the
pons [38, 39]. Autopsy data also report cases of reduced
brain stem [33, 35, 43] with a specific reduction of the
ventral portion of the pons [33, 35].
Cerebellum showed volume loss at head computed

tomography imaging [38] and MRI [38], possibly reveal-
ing vermian hypolplasia [37, 39, 42]. Autopsy reports
showed size reduction of the cerebellum (Fig. 2) [35, 43]
and partial aplasia of the vermis involving the posterior

part [40]. Histologically, cases with a focal loss of
Purkinje cells [40] and granular cells [35, 40] have been
reported associated with the presence of rudimentary su-
perior cerebellar peduncles [40]. Heterotopic cell nests
have been sometimes reported in the cerebellar white
matter [35] whereas in other cases normal neuronal
density and morphology have been described [36].
Cisterna magna has been described radiologically

[39, 42] and anatomically [40] as enlarged up to “mega”
cisterna magna.
Localized or diffuse malformations of cortical develop-

ment have been frequently reported by neuroimaging
[38], described as abnormal convolution characterized
by gyral simplification [38, 39]. Autopsy findings also
showed abnormal sulcal pattern [44] characterized by
immaturity of the cerebral gyri (Fig. 2) [32, 35] with
simple convolution pattern [32, 35], few shallow sulci
running randomly [40] or abnormally oriented gyri
resulting in strongly vertical pitch [36]. Other reports
showed unduly narrow cerebral gyri [30, 33] with

Fig. 1 Wnt genes expression during the brain developmental process, from gastrulation to the differentiation of the structures forming the
central nervous system. Note the spatial and temporal overlapping of the gene expression pattern
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marked kinking [33] and wide intergyral sulci [30].
Other cases reported a relatively normal pattern of con-
volution with slight underdevelopment of the frontal
operculae resulting in partial uncovering of the insula
(Fig. 2) [43]. Histologically, focal zones of ectopic neu-
rons have been reported, scattered in the subcortical
white matter [40], as well as neuronal loss [40], and re-
duction in the number of oligodendroglia [33] with im-
paired myelinization [43, 47]. It has been suggested that
the observation of focal demyelinization in CdLS may be
related to incomplete myelin formation [36] rather than
myelin degeneration as previously proposed [30]. Some-
times gliosis has been reported [30, 39, 40, 43] whereas
in other cases was absent [32, 33, 36] suggesting that
neurodegenerative changes are not specific features [36].

Brain abnormalities in CdLS are summarized in Fig. 3.

Wnt signaling pathway in Cornelia de Lange
Several experimental models have been used to dissect
molecular mechanisms underlying CdLS. In particular,
gene expression alterations have been assessed using D.
melanogaster [48, 49], D. rerio [50–54], mutant mouse
[1, 2, 55] and human cells [5, 51, 54].
In all studied models, abnormalities in the Wnt signal-

ling pathway have been reported: gene-expression
alterations in Wnt components have been shown in fibro-
blasts derived from patients [5, 51, 54]. In Drosophila,
Nipped-B, ortholog of mammalian NIPBL, is known to
regulate Ultrabithorax [56] a key repressor in the dorso-
ventral patterning of Wingless [57], mammalian ortholog

Table 1 Frequency of brain disorders in reported cases with deep brain investigations
Reference Method Microcephaly/

Microencephaly
Cerebral or
lobar atrophy

Brain stem
size
reduction

Malformation
cortical
development

Corpus
callosum
anomalies

Ventricles
dilatation

Cerebellar
anomalies

Cisterna magna
enlargement

Pituitary

Roshan Lal 2016 MRI 4/15 6/15 3/15 1/15 3/15 3/15 5/15 5/15 4/15

Whitehead 2015 MRI and/
or CT

6/7 6/8 5/7 5/8 NME NME 6/8 NME 0/8

Lalatta 2007 MRI 1/2 1/2 0/2 0/2 1/2 0/2 1/2 0/2 0/2

Vuilleumier 2002 Autopsy 1/1 1/1 0/1 1/1 NME 0/1 0/1 0/1 0/1

Yamaguchi 1999 Autopsy 1/1 1/1 1/1 1/1 NME NME 1/1 NME NME

Sasaki 1996 Autopsy 1/1 1/1 1/1 1/1 NME 1/1 NME NME NME

Hayashi 1996 Autopsy NME NME 1/1 1/1 1/1 1/1 1/1 1/1 1/1

Sato 1986 Autopsy 1/1 1/1 0/1 1/1 a 0/1a 0/1 NME a

France 1969 Autopsy 2/2 NME 2/2 2/2c NME 1/2 1/2 NME 1/2

Mc Artur 1967 Autopsy 1/1 1/1 NME 0/1 NME NME 0/1 NME 0/1

Hart 1965 Autopsy 1/1 NME 1/1 1/1 NME NME NME NME 1/1

Schlesinger 1963 Autopsy 2/2 2/2 NME 2/2 NME NME NME NME 2/2b

Data are presented as “number of affected cases/number of total investigated cases”
CT = computed tomography, MRI =magnetic resonance imaging, NME = no explicitly mentioned
aInvolved by tumor invasion
bHistological changes
cNot severe gyral abnormalities but histological signs of malformation of cortical development

Fig. 2 Example of brain abnormalities in a fetus at 25 weeks of gestation. Note the size reduction of the cerebellum with severe volume loss; the
immaturity of sulcal pattern with slight underdevelopment of the frontal operculae for the gestational age, resulting in uncovering of the insula;
the abnormalities of the corpus callosum that appears thin (in the trunk area) and short (with absence of the genu)
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Fig. 3 Summary of the brain abnormalities in CdLS. Cartoons compare the sagittal section of normal brain (on the left) with the sagittal section
of affected brain (on the right). In the same patient, often more than one of the presented brain abnormalities are present, however only seldom
all lesions are detected in the same patient

Fig. 4 Diagram of link between CdLS, Wnt pathway and brain development. Possible link between molecular alterations and brain abnormalities
in CdLS. An impairment in Wnt pathway leads to abnormalities in brain development during development that could represent one of the
causes of CdLS brain malformations
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of Wnt. Moreover, in a recent paper investigating Rad21
reduced levels in zebrafish embryos, it was shown that
heart looping is altered due to failure of neural crest cells
to populate developing heart. Analysis of trascriptome re-
vealed that among others, Wnt signalling pathway compo-
nents were mis-expressed in rad21-depleted embryos
[58]. In D. rerio and human fibroblasts modeling Nipbl
[51] and Smc1a [54] haploinsufficiency, alterations of pro-
tein levels of the canonical Wnt pathway components
have been reported. Intriguingly, in these models, chem-
ical activation of canonical Wnt pathway has been shown
to rescue the adverse phenotypes in the developing ner-
vous system, suggesting a causative role of Wnt pathway
alterations in brain abnormalities in CdLS (Fig. 4).

Conclusions
In conclusion, this rare but severely debilitating syndrome,
although described in the 1930s, is still in search of a
mechanistic and neurological definition. The syndrome
presents an array of congenital malformations but it is
invariably associated with cognitive impairment that
somehow overlaps with the so-called “autism spectrum
disorders”. Here, we summarize findings that link a mo-
lecular pathway found to be perturbed in all studied
models with brain morphological developmental abnor-
malities reported in CdLS patients, summarizing molecu-
lar and structural features that could be responsible for, at
least in part, the cognitive alterations. Importantly, given
the genetic heterogeneity it will be important to dissect
possible differences between patients in future studies.
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