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Down-regulation of miR-9* in the
peripheral leukocytes of Huntington’s
disease patients
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Abstract

Background: Huntington's disease (HD), caused by expansion of a polyglutamine tract within HUNTINGTIN (HTT)
protein, is an autosomal dominant neurodegenerative disease associated with a progressive neurodegeneration of
striatum and cerebral cortex. Although a few studies have identified substantial microRNA (miRNA) alterations in
central nervous tissues from HD patients, it will be more accessible to employ these molecular changes in peripheral
tissues as biomarkers for HD.

Methods: We examined the expression levels of 13 miRNAs (miR-1, mirR-9, miR-9*, miR-10b, miR-29a, miR-29b, miR-
124a, miR-132, miR-155, miR-196a, miR-196b, miR-330 and miR-615), 10 of which previously demonstrated alterations
and 3 of which are potential regulators of differentially-expressed genes in brains of HD patients, in the peripheral
leukocytes of 36 HD patients, 8 pre-symptomatic HD carriers and 28 healthy controls.

Results: We found expression levels of miR-9* was significantly lower in HD patients compared with those in healthy
controls, while other miRNAs did not show significant difference between these two groups. However, there was no
significant correlation between Unified Huntington’s Disease Rating Scales (UHDRS) and levels of miR-9% in peripheral
leukocytes of HD patients.

Conclusion: Our findings indicate the potential of miR-9* in peripheral leukocyte as a signature of neurodegeneration

in HD patients.
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Background

Huntington’s disease (HD) is an autosomal dominant
neurodegenerative disease presented with psychiatric
manifestations, cognitive decline, and choreiform move-
ments [1]. A CAG trinucleotide repeat expansion in
HTT, the causative gene mutation in HD, generates
a polyglutamine tract in HUNTINGTIN (HTT) protein
[1]. This polyglutamine tract leads to a conformational
change in HTT and accumulation of insoluble intranuc-
lear and intracytoplasmic aggregates. These abnormal
aggregates may impair mitochondrial and proteosome
pathways [2, 3], increase oxidative stress [3, 4], disrupt
transcriptional regulation [5] and protein-protein inter-
action [6], and eventually lead to neuronal death
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particularly in the striatum and cortex [7]. Compelling
evidence shows that these abnormal molecular pathway
profiles may be detected not only in nervous but also in
peripheral tissues [8—16]. And searching for biomarkers
in peripheral tissues, especially from blood, is of high
priority given the ease of sample collection.

MicroRNAs (miRNAs) are small non-coding RNAs
that regulate gene expression at the post transcriptional
level [17]. Binding of a miRNA to the 3" untranslated re-
gions (UTRs) of its target mRNA typically results in
mRNA degradation and translational suppression [17].
Some miRNAs are highly expressed in the central ner-
vous tissues [18] and appear to regulate vital neuronal
function such as neuronal lineage commitment [19] and
neurite outgrowth [20]. Recent studies have indicated al-
tered expression patterns of miRNAs in neurodegenera-
tive diseases including HD [21-24]. Hoss et al. identified
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five up-regulated miRNAs (miR-10b, miR-196a, miR-
196b, miR-615 and miR-124a) in prefrontal cortex from
HD patients [23]. Johnson et al. found reduced expres-
sion of miR-132 in the cortices of human HD patients,
whereas miR 29a and miR-330 were up-regulated in the
same human brain tissues [24]. Packer et al. found sig-
nificant down-regulation of miR-9, miR- 9% and miR-
29b, as well as a significant dynamic change of miR-132
in the cortices of HD patients [22]. By applying network
analysis for the gene expression datasets of HD post
mortem brain regions, Neueder et al. predicted that up-
regulated gene expression modules involving DNA bind-
ing/zinc-finger and metallothionein in cerebellum is
potentially regulated by miR-124, and upregulated gene
expression modules involving amino acid catabolic
process and protein folding/chaperones in frontal cortex
are possibly regulated by miR-155 and miR-1, respect-
ively [21]. Although the majority of miRNA profiling
studies in HD have been performed in brain samples,
miRNA dysregulations have been rarely found in other
body fluids or tissues, such as plasma, peripheral blood
and cerebrospinal fluid. For example, HD gene carriers
demonstrate high level of miR-34a in plasma before the
onset of clinical manifestations [25]. Herein we chose 10
miRNAs that previously demonstrated alterations in the
brains of HD patients [22-24] and 3 miRNAs that are
potential regulators of differentially-expressed genes in
brains of HD patients to examine their expression in the
peripheral leukocytes of HD patients and gender- and
age-matched healthy controls (HCs).

Methods

Ethics statement and study populations

The diagnosis of HD patients and pre-symptomatic HD
(preHD) carriers was confirmed by a neurological and
genetic test showing expanded CAG repeats in the exon
1 region of the HTT [1]. Unified Huntington’s Disease
Rating Scale (UHDRS) were recorded for each patient
[26]. Patients with liver or renal dysfunctions, cardiac
and pulmonary disease, infection, malignancy or preg-
nancy were excluded. This study was approved by the
Institutional Review Boards of Chang Gung Memorial
Hospital and all the individuals signed a written in-
formed consent.

Sample collection

Blood samples were collected into PaxgeneTM blood
RNA tube (Pre-AnalytiX, Qiagen, Valencia, CA). Total
RNA of leukocytes was extracted using the PaxgeneTM
blood RNA Extraction Kit (Pre-AnalytiX, Qiagen,
Valencia, CA), and transferred into the RNeasy MinElute
spin column (RNeasy MinElute Cleanup Kit, Qiagen,
Valencia, CA) according to manufacturer’s instruction.
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RNA quality was determined by the A260/A280
absorption ratio.

Quantification of miRNA expression in peripheral leukocytes
RNA was converted to cDNA using the SuperScript III
First-Strand (Invitrogen). For each sample, miRNA
expression levels were quantified using the TaqMan
miRNA assays (miR-1, mirR-9, miR-9%, miR-10b,
miR-29a, miR-29b, miR-124a, miR-132, miR-155,
miR-196a, miR-196b, miR-330, miR-615 and RNU48)
and the ABI 7900HT Sequence Detection System
Applied Biosystems). Each reaction included cDNA from
100 ng of RNA, 900 nM of each primer, 100 nM of
probes or primers and Universal PCR Master Mix
(Applied Biosystems). PCR parameters were 50 °C for
2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 s, 60 °C
for 1 min. Each sample was assessed in duplicate. Cycle
threshold (CT, the fractional cycle number where the
fluorescent signal reaches detection threshold) in each re-
action was set in the linear range. Relative expression
values were normalized to RNU48. Relative gene expres-
sions were calculated using the 2°“" method, ACT = CT
(RNU48) — CT (target miRNA). For each set of values,
data were expressed as means + standard deviation (SD).
Differences between groups were evaluated by analysis of
variance (ANOVA) with post-hoc Bonferroni test or ana-
lysis of covariance (ANCOVA) adjusted by age and gender
where appropriate. Correlations of UHDRS (motor scale,
independence scale and functional capacity), size of
expanded CAG repeats or disease duration with levels of
mRNA were analyzed by covariate-adjusted generalized
linear model (adjusted by age and gender). All P-values
were two-tailed. The values of P < 0.05 were considered
significant.

Resultss
Previous report showed that the expression levels of a
number of miRNAs, including mirR-9 [22], miR-9* [22],
miR-10b [23], miR-29a [24], miR-29b [22], miR-132 [24],
miR-196a [23], miR-196b [23], miR-330 [24], miR-615
[23], were altered in brain samples of HD patients. The
mir-1, miR-124a, and miR-155 were the potential regula-
tors that were predicted to control the differentially-
expressed genes in brains of HD patients [21]. Here we
measure the expression levels of above miRNAs in per-
ipheral leukocytes of a cohort including 36 HD patients,
8 PreHD carrier and 28 HCs (Table 1). The age of
preHD carriers (29.75 + 7.21 years) was significantly
younger than HCs (42.03 + 11.01 years) and HD patients
(45.58 + 12.53 years), whereas the age of HD patients is
not different from that of the HCs.

HD patients displayed significantly lower expression
level of miR-9* (0.0008 + 0.0013) compared with HCs
(0.0028 + 0.0035, P = 0.005, Table 2). With the estimated
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Table 1 Demographic characteristics and blood biochemical
parameters of healthy controls and the patients with Huntington's
disease (HD)

HD PreHD Healthy controls
(n = 36) (n=28) (n=28)
Age (years) 4558 + 1253 2975+ 721" 4203 + 1101
Male (%) 20 (55.56) 3 (37.50) 17 (58.62)
HD duration 438 +3.09

(years)

Expanded CAG
repeat number

Drugs (%)

4642 £ 9.07 4413 £3.17

Dopamine 18 (50.00) 0 (0) 0 (0)

antagonist

Anti-depressants 9 (25.00) 0 (0) 0 (0)

(SSRI, SNRI, NaSSA)

Amantadine 5(13.89) 0(0) 0(0)
UHDRS

Motor score 272 + 1894 0

Independence 7857 £2198 100
scale

Functional 931 + 371 13
capacity

Scale ranges (normal to most severe) include motor score (0 to 124),
independence scale (100 to 10), and functional capacity (13 to 0)

HD Huntington’s Disease, PreHD pre-sympatomatic Huntington’s disease, NaSSA
Noradrenergic and specific serotonergic antidepressant, SNRI Serotonin-
norepinephrine reuptake inhibitor, SSRI Selective serotonin re-uptake
inhibitors, UHDRS The Unified Huntington’s Disease Rating Scale
“Statistically significant in comparison with HD patients and healthy controls
respectively, P < 0.05, ANOVA with post-hoc Bonferroni test
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standard deviations in each marker, at the level of 0.05,
present sample sizes achieve a power of 81.95% for
miR-9* to detect differences in the mean between HD
and HC. MiR-9* plays an important role in regulating
expression of neuron-specific genes [22, 27, 28]. Its
down-regulation may be relevant to the pathogenesis of
HD and may serve a potential therapeutic target for HD.
On the other hand, we calculated the correlation be-
tween miR-9* expression level and age, medications, or
UHDRS by covariate-adjusted generalized linear model.
All factors did not show significant correlation with ex-
pression levels of miR-9* (data not shown). Given that
our sample size is relatively small, large cohort studies
will be warranted to clarify if miR-9* may serve as a bio-
marker to monitor the disease status in HD.

Regarding to other miRNAs, the expression level of
miR-124a was not detectable in peripheral leukocytes.
The expression levels of the rest of miRNAs were similar
in HD patients, PreHD carrier and HCs.

Discussion

Given that a central nervous tissue sample from HD pa-
tients is difficult to obtain, a biomarker in peripheral tis-
sues, especially from blood, should be more feasible to
indicate disease status. Although the main pathology of
HD is in the striatum, some studies have detected paral-
lel biochemical changes in peripheral tissues [29-33].
Immune activation [29], oxidative damage to DNA [30],
altered activation of Akt pathway [31], reduction of
cAMP [32] and creatinine kinase-BB [33] have been
demonstrated in both peripheral blood and brain of HD
patients or mouse models. Here we found the expression
level of miR-9* in peripheral leukocytes was significantly

Table 2 miRNA levels in the peripheral leukocytes from patients with Huntington’s disease versus healthy controls

miRNA HD (n = 36) PreHD (n= 8) Normal control (n = 28) P value*
miR-9" 0.0008 + 00013 0.0008 + 0.0011 0.0028 + 0.0035 0.005
miR-9 0.0019 + 0.0019 0.0007 + 0.0008 0.0037 + 0.0055 0.064
miR-1 0.0013 + 0.0015 0.0018 + 0.0022 0.0029 + 0.0035 0.070
miR-330 0.0128 + 0.0081 0.0208 + 0.0157 0.0184 + 0.0098 0.071
miR-29b 0.0023 + 0.0043 0.0055 + 0.0061 0.0038 + 0.0039 0.075
miR-10b 0.0013 + 0.0012 0.0024 + 0.0029 0.0022 + 0.0019 0.092
miR-615 0.0238 + 0.0370 0.0080 + 0.0074 0.0336 + 0.0328 0212
miR-196a 0.0072 + 0.0063 0.0136 £ 00143 0.0122 £ 0.0139 0.252
miR-196b 0.0089 + 0.0093 0.0146 + 0.0156 00161 +0.0213 0.265
miR-155 0.0684 + 0.0505 0.0928 + 0.0765 0.0639 + 0.0464 0448
miR-132 0.0381 + 0.0255 0.0476 + 0.0346 0.0457 + 0.0354 0.661
miR-29a 0.0926 + 0.1003 0.1024 + 0.0911 0.1136 + 0.1368 0.841
miR-124a Not detectable Not detectable Not detectable

HD Huntington'’s Disease, PreHD pre-sympatomatic Huntington’s disease

*P value of ANCOVA with adjustment of age and gender

“Statistically significant in comparison with healthy controls, P < 0.05, ANCOVA with adjustment of age and gender
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lower in HD patients compared with that HCs. The
down-regulation of miR-9* may be involved in the
pathogenesis of HD.

A single miR-9 precursor produces two mature
miRNAs, miR-9 and miR-9% which are abundantly
expressed in both developing and adult brain [34].
MiR-9 is highly conserved across vertebrate species and
shows brain-specific expression [35, 36]. The comple-
mentary strand miR-9* is also crucial for brain develop-
ment [27, 28, 37]. MiR-9* may control the transition
from neural progenitor to postmitotic neurons by
switching the chromatin remodeling complexes from
neural-progenitor-specific ~ Brg/Brm-associated factor
(npBAF) to neuron-specific BAF [27, 28]. Suppressing
miR-9* activity in postmitotic neurons induces the ex-
pression of BAF53a, which is an npBAF [27]. Overex-
pression of miR-9* with miR-9 and miR-124 converts
human fibroblasts into neurons [28], indicating its role
in neuronal differentiation. In adult brains, the expres-
sion levels of miR-9* are decreased in neurodegenerative
diseases such as HD and Alzheimer’s disease [22, 38].
Inhibition of miR-9* activity affects hippocampus-
dependent memory by suppressing hippocampal long-
term potentiation (LTP) and regulating LTP-related
genes DMD and SAP97 [39]. These findings suggest that
miR-9*-mediated gene regulation is important for synap-
tic plasticity and memory, both of which play an import-
ant role in the generation of abnormal movements and
psychiatric abnormalities in HD.

MiR-9* also demonstrates the potential of regulating
the expression of co-repressor of repressor element
1-silencing transcription factor (CoREST) that contains
predicted MiR-9* regulatory site [22]. In neurons, re-
pressor element 1-silencing transcription factor (REST)
is expressed at low level and mainly confined to the
cytoplasm by binding to normal HTT [40]. However,
the binding of mutant HTT to REST reduces, which
allows REST to translocate to nucleus [40]. In nucleus,
REST down-regulates expression of neuron-specific genes
by recruiting co-repressors CoREST and binding to re-
pressor element 1 (RE1) consensus sequences [40, 41].
These genes suppressed by REST and CoREST encode a
number of proteins involved in maintaining function of
cholinergic, GABAergic and glutaminergic neurons and in
differentiation of medium spiny projection neurons [42].
For example, BDNF expression is down-regulated in brain
of HD due to increased binding of REST to RE1 site of
BDNF promoter [40]. The down-regulation of miR-9*
may therefore increase expression of CoREST, leading to
down-regulation of specific neurotrophic genes targeted
by CoREST, which may mediate the selective neuronal
dysfunction in striatum of HD. On the other hand, RE1
sequence is also located in close proximity to miR-9* and
REST may bind to the RE1 site to suppress the expression
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of miR-9* [43]. Since mutant HTT tends to dissociate
from REST, the released REST is more likely to occupy
RE1 site in the promoter to suppress miR-9* expression.
The decreased miR-9* expression results in increased
CoREST, which would further down regulate miR-9* in a
vicious cycle in HD.

The limitation of the study is that the small sample
size, especially for the preHD group, may lower the stat-
istical power. Another general issue is the differences in
the baseline characteristics of the study groups, such as
age and gender distribution, although are small, which
may affect the results of our study. Some unknown in-
teractions of nutrition and medications may partially
contribute to the regulation of miRNA expression be-
tween groups.

Conclusion

Our results clearly demonstrate the alterations of
miRNA levels in peripheral leukocytes of HD patients,
which has not been reported before. A larger, multi-
center, longitudinal study regarding the correlation of
peripheral miRNA expression levels with clinical and
neuroimaging features will determine the potential ap-
plication of peripheral miR-9* as biomarkers for HD,
and might shed light on the involvement of miR-9* in
HD.
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