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Abstract

clinical follow-up of the patients.

Dyskeratosis congenita, DKCT; TERT; RTEL1

Background: The telomere biology disorders (TBDs) include a range of multisystem diseases characterized by
mucocutaneous symptoms and bone marrow failure. In dyskeratosis congenita (DKC), the clinical features of TBDs
stem from the depletion of crucial stem cell populations in highly proliferative tissues, resulting from abnormal
telomerase function. Due to the wide spectrum of clinical presentations and lack of a conclusive laboratory test it
may be challenging to reach a clinical diagnosis, especially if patients lack the pathognomonic clinical features of TBDs.

Methods: Clinical sequencing was performed on a cohort of patients presenting with variable immune phenotypes
lacking molecular diagnoses. Hypothesis-free whole-exome sequencing (WES) was selected in the absence of compelling
diagnostic hints in patients with variable immunological and haematological conditions.

Results: In four patients belonging to three families, we have detected five novel variants in known TBD-causing genes
(DKC1, TERT and RTELT). In addition to the molecular findings, they all presented shortened blood cell telomeres. These
findings are consistent with the displayed TBD phenotypes, addressing towards the molecular diagnosis and subsequent

Conclusions: Our results strongly support the utility of WES-based approaches for routine genetic diagnostics of TBD
patients with heterogeneous or atypical clinical presentation who otherwise might remain undiagnosed.

Keywords: Telomere biology disorders,Telomeropathies, Next-generation sequencing, Whole-exome sequencing,

Background

The telomere biology disorders (TBDs), or telomeropa-
thies, embody a range of pathological phenotypes ensuing
from abnormal telomerase function. The first TBD to be
described was dyskeratosis congenita (DKC), a severe
inherited multisystem disorder characterized by reticulate
skin pigmentation, nail dystrophy, oral leukoplakia and
bone marrow failure, presenting with cytopenia of one or
more hematopoietic cell lineages [1]. Clinically, telomere
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shortening due to the premature senescence of stem cells
is most prominently displayed in highly proliferating mu-
cocutaneous tissues [2]. The most severe clinical feature
of DKC is bone marrow failure, affecting the majority of
patients and causing premature mortality. In addition,
DKC patients have an increased risk for malignancies,
fatal pulmonary complications, and immunodeficiency [3].
At present, DKC is known to be caused by mutations in
11 genes, associated with X-linked recessive inheritance in
DKC1, or with autosomal recessive and/or dominant in-
heritance in TERT, TERC, NHP2, NOP10, ACD, WRAPS53,
TINF2, RTELI, CTC1, and PARN [2, 4—6]. Recently, the
term DKC has been used to categorize only well-defined
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childhood symptoms [4]. Based on the phenotype, a se-
vere variant of DKC manifests as Hoyeraal-Hreidarsson
syndrome (HHS). This is a rare disorder characterized by
bone marrow failure, immunodeficiency, cerebral hypo-
plasia and intra-uterine growth retardation [3, 7]. DKC
has often gone unnoticed due to delayed-onset of muco-
cutaneous findings [8]. The wide spectrum of clinical pre-
sentations and the lack of a conclusive laboratory test for
DKC can at times make the clinical diagnosis challenging.
Exact genetic diagnosis in DKC is essential due to the lim-
ited efficacy of therapeutic options, and the genetic antici-
pation common in DKC makes timely family counseling a
priority.

In the present study, we attested the validity of
whole-exome sequencing (WES)-based approaches for rou-
tine genetic diagnostics of patients with heterogeneous clin-
ical presentation or suspicion of TBD. In three patients and
a brother of one of the patients presenting with varied char-
acteristics of immunological or hematological disorders, we
identified monogenic variants in genes associated with
TBDs, and supported the genotype-phenotype correlation
by demonstrating shortened blood cell telomere length.

Methods

Study subjects

This study was performed in Helsinki University Hos-
pital, at the Pediatric and Adult Immunodeficiency
Units, at the Department of Adult Hematology and at
the Division of Pediatric Hematology-Oncology and
Stem Cell Transplantation. Genetic analyses were per-
formed as part of clinical workup in 212 clinically un-
diagnosed patients with disease phenotypes suggestive of
monogenic conditions overlapping Primary immunodefi-
ciency disorders (PIDs). The characterization of the phe-
notypes of the studied patients is shown in the
Additional file 1: Figure S1. After the identification of al-
terations in TBD-associated genes in Finnish patients,
we retrospectively collected their clinical data. This
study was conducted in accordance with the principles
of the Helsinki Declaration and was approved by the Co-
ordinating Ethics Committee of Helsinki University Hos-
pital. An informed consent was received from patients
and in case of children, from their parents.

Molecular genetics
Genomic DNA of the studied individuals was isolated
from peripheral blood through standard salt precipita-
tion protocols. Whole-exome sequencing (WES) was
performed in 212 patients. The detailed workflow for
reads alignment and variant calling is provided in the
Additional file 2.

Briefly, a SureSelect Clinical Research Capture Exome
or SureSelect Human All Exon 50 Mb kits (Agilent, Santa
Clara, CA, USA) were used. Paired-end sequencing was
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performed on the HiSeq 1500 or HiSeq 2000 platforms
(Ilumina, San Diego, CA, USA). The sequencing reads
were analyzed using version 2.7 of the in-house developed
analysis pipeline (VCP) for quality control and variant
identification [9]. Annovar (accessed in May 2017) was
used for the annotations and prediction of functional con-
sequences of the identified variants [10, 11]. The se-
quences were aligned with the GRCh39 reference build of
the human genome using the BWA aligner [12]. Down-
stream processing and variant calling were performed with
the Genome Analysis Toolkit [13], SAMtools [14], and
Picard. Substitution and InDel calls were made with
GATK Unified Genotyper.

We considered only variants with a minor allele fre-
quency (MAF) <0.01, with frequency filtering based on
data from Genome Aggregation Database (gnomAD,
Cambridge, MA, USA; http://gnomad.broadinstitute.org/
; and the SISu project (http://sisu.fimm.fi/) accessed in
May 2017, respectively [15, 16]. We filtered according to
the predicted consequences at the transcript level, select-
ing frameshift, in-frame, nonsense, splicing and missense
variants. The variants were prioritized according to the
predicted effect on the protein, to the conservation of
the affected amino acids and in silico prediction tools
(included in Annovar), and pathogenicity was predicted
according to the American College of Medical Genetics
(ACMQG) Standards and Guidelines [17]. Where possible,
the candidate variants were analyzed in the families for
co-segregation with affected relatives. Due to the several
described inheritance models, we considered homozy-
gous, compound heterozygous and heterozygous vari-
ants. All identified candidate variants were validated by
Sanger sequencing (Additional file 2).

Telomere length analysis

Relative telomere length (RTL) was determined by the
quantitative PCR method described by Cawthon et al
[18], with minor modifications. Briefly, each sample
(17.5 ng DNA from peripheral blood leukocytes) was ana-
lyzed in triplicate wells in separate telomere (TEL) and
single copy gene (HBG) reactions on an ABI 7900HT in-
strument (Applied Biosystems), at two separate occasions
in 96-well PCR plates. TEL/HBG (T/S) values were calcu-
lated by the 2 — ACt method, where ACt = Ctrg-Ctypg.
The RTL value was generated by dividing samples T/S
value with the T/S value of a reference cell-line DNA
(CCRF-CEM) included in all runs. A standard curve of
the reference cell line DNA was included in every run to
monitor PCR efficiency. The RTL values were compared
to 113 normal controls (age 0—83 years).

Results
Genetic screening of 212 clinically undiagnosed Finnish pa-
tients identified five novel disease variants in TBD-associated
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genes in three patients and a brother of one of the pa-
tients (Fig. 1, Tables 1 and 2), most of which with no
clear pathognomonic signs of telomeropathies. The
hematological and immunological characterizations of
the patients are summarized in Table 3.

Patient 1 (P1.1) is a 24-year-old male from a
non-consanguineous family. He was remitted to WES to
search for mutations associated with chronic mucocutane-
ous candidiasis, with the identification of a novel variant in
DKCI (c.1218_1219insCAG, p.(Asp406_Ser407insGln)). In
early childhood, he had been diagnosed with vesicoureteral
reflux and urinary tract infections, but never suffered from
severe infections. He received normal vaccinations includ-
ing MMR. From an early age on, his fingernails were ab-
normal and broke easily. His skin was reddish and easily
irritable. The skin changes in his neck and upper thorax
were consistent with poikiloderma. At the age of 10—
13 years, he started presenting with a recurrent aphthous
ulcer on oral mucosa including the tongue. Patchy lesions
of homogenous leukoplakia were observed on the dorsum
of the tongue and the ventral side. In biopsies, epithelial
changes compatible with leukoplakia and candidiasis were
found resulting in the immunological workup. He had
slightly decreased IgG2 concentration and CD4+ T cell
count but otherwise normal results. He had no other cyto-
penias. At the age of 19 years, Th17 cells were found to be
subnormal (< 0.02% of CD4 T cells), but this could not be
confirmed in retesting. Family studies showed that an older
brother (P1.2) of the index patient suffered from slightly
milder skin, nail and oral mucous membrane abnormal-
ities, as well as recurrent genital Candida infections. Gen-
etic testing revealed that P1.2 carried the same variant,
confirming co-segregation with the disease. The variant
was inherited from the mother, consistent with X-linked
recessive inheritance. The maternal grandfather died trau-
matically at his 40’s but is remembered to have had nails
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and skin changes, as well. To the best of our knowledge,
none of the close family of P1.1 and P1.2 has suffered from
solid tumors, hematological malignancy, lung fibrosis or
peripheral blood cytopenias.

Patient 2 (P2) is an 1l-year-old daughter of
non-consanguineous parents. The WES analysis revealed
two novel heterozygous variants in TERT: c.2051A > G,
p.(Asp684Gly) and ¢.3202G > A, p.(Glul068Lys). Segre-
gation analysis in the family demonstrated that the pa-
tient had inherited one variant from each parent,
supporting autosomal recessive inheritance. She was
born at term but small-for-gestational-age and catching
up the normal growth by the age of two. No develop-
mental delays were recorded early in the infancy or later
on. At the age of four, she had disorders in swallowing,
and oesophageal strictures were diagnosed requiring
dilatation. By the same age, mild thrombocytopenia and
macrocytosis were detected in the peripheral blood, but the
bone marrow showed normal hematopoiesis. As the cyto-
penias persisted, re-evaluation of her bone marrow at the
age of 10 years showed features of myelodysplasia and hy-
poplastic anemia. Paroxysmal nocturnal hemoglobinuria
and Fanconi anemia were excluded. Despite extensive
immunological evaluation, no immunodeficiency has
been detected. She has never presented pulmonary, nail
or skin symptoms. She has fair and thin hair. Her older
sister (16-years old) did not present any symptoms.
None of her close relatives were diagnosed with cancer
or classical DKC.

Patient 3 (P3) is a 2-year-old boy of non-consanguineous
parents. He was analyzed by WES due to immunodefi-
ciency and the occurrence of opportunistic infections, iden-
tifying two novel heterozygous variants in RTELI:
¢1721G > C, p.Arg574Pro (confirmed at RNA transcript
level) and c.3724_3725delTG, p.(Cys1242Cysfs*18). Both
variants are rare in the population and segregation analysis

Family 1

M: DKC1 p.(Asp406_Ser407insGlIn)

Family 2

M1: TERT p.(Asp684Gly)
M2: TERT p.(Glu1068Lys)

Family 3

M1: RTEL1 p.Arg574Pro
M2: RTEL1 p.(Cys1242Cysfs*18)

M/N M1/N
P1.1 P1.2
M/N M/N

Fig. 1 Pedigrees of three families with telomere biology disorders. The panel shows pedigrees of patients with telomere biology disorders (TBD).
The original index cases are indicated as P1.1-P3. Solid symbols indicate affected patients, open symbols unaffected. For each family, the identified
variants in TBD-associated genes are indicated by M. Normal alleles are listed as N

O

M2/N

M2/N M1/N

P3

M1/M2
P2

M1/M2
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Table 2 Germline variants identified in patients with telomere biology disorders
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ID  Gene Nucleotide Amino acid change® Inheritance MAF® Carriers  Affected domain® ™ REVEL . Classification®  Reference
change? (overall / score®
Finland)®
P11 DKCT  ¢1218_1219insCAG  p.(Asp406_ XLRf - - - - Likely novel
Ser407insGln) pathogenic
P12 DKCI  ¢1218_1219insCAG  p.(Asp406_ XLR' - - - - Likely novel
Ser407insGIn) pathogenic
P2 TERT c2051A>G p.(Asp684Gly) AR 00015  27/25 Reverse transcriptase 0.548 Uncertain novel
domain significance
TERT  ¢3202G>A p.(Glu1068Lys) AR - - - 0.546 Uncertain novel
significance
P3  RTELT c1721G>C p.Arg574Pro AR 4.08E-06 1/0 ATP-dependent 0.752 Likely novel
helicase, C-terminal; pathogenic
P-loop containing
nucleoside triphosphate
hydrolase
RTEL] ¢3724_3725delTG  p.(Cys1242Cysfs'18) AR 8.20E-06 2/1 - - Pathogenic novel
Abbreviations: F, female; M, male; XLR, X-linked recessive, autosomal recessive; MAF, minor allele frequency
**data retrieved with Annovar; AR
DKC1 gene reference sequences (Ensembl): ENSGO0000130826; ENST00000369550
TERT gene reference sequences (Ensembl): ENSGO0000164362; ENST00000296820
RTELT gene reference sequences (Ensembl): ENSG00000258366; ENST00000318100
?location according to RefSeq
Pminor allele frequency according to gnomAD database™*
“InterPro database**
9REVEL pathogenicity score** [26]
€estimated according to the ACMG Standards and Guidelines [17]
fmale
Table 3 Summary of immunologic features of the patients with telomere biology disorders
Patient Reference Range P11 P1.2 P2 P3
(adults/children)
Lymphocytes 1300-3600/1700- 2030 2340 660 1370
6900/1100-5900x106/L
Monocytes 200-800 % 10%/L 620 560 290 460
Neutrophils 1500-6700 x 10°%/L 1750 2550 1110 6540
Basophils 0-100 x 10%/L 10 40 10 20
Eosinophils 30-440 x 10%/L 90 170 7 40
Platelets 150,000-360 000 x 10%/L 218,000 264,000 62,000 233,000
B-cells (CD19+) 200-2100/ 200-1600x10%/L 200 360 80 50
CD3+ 900-4500/700-4200x 10°/L 1340 1670 560 490
CD3 + CD4+ 500-2400/ 300-2000x10%/L 430 817 303 294
CD3 + CD8+ 300-1600/00-1800x10%/L 770 800 230 220
NK-cells (CD37CD16* 567) 100-1000/ 90-900x10°/L 140 200 90 20
Plasmacytoid 0.1-0.3% 0.14 NA 0.10% NA
(lin"HLA-DR*CD123*CD11¢)
Monocytoid 0.1-0.3% 042 NA 0.24% NA
(lin"HLA-DR*CD123°CD11c")
I9G 6.8-15.0 g/L 11.1 NA 143 19
IgA 0.52-4.02 g/L 295 NA 282 0.39
IgM 047-2.84 g/L 047 NA 144 0.5
IgE 0-110 1U/L 46 NA NA <2
Lymphocyte proliferative responses to mitogens Phytohemagglutinin Concanavalin A normal NA normal abnormal

Abbreviations: NA, not assessed
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showed that one variant was inherited from each par-
ent, supporting autosomal recessive inheritance. He
was born prematurely at gestational week 31 and was
small-for-gestational-age (weight —3.6 SD/ height — 2.2
SD). He received normal vaccinations at 3 months of age.
At the age of 7 months, he was hospitalized for fever and
pneumonia, and Prneumocystis jirovecii plus metapneumo-
virus and coronavirus were detected in the respiratory se-
cretions. In addition, cytomegalovirus DNAemia was
present with high copy numbers accompanied by retinitis.
Immunological work-up revealed a T"B"NK™ severe com-
bined immunodeficiency (SCID) phenotype. Brain MRI
showed atrophic changes in the cerebellum and microce-
phalia. At the age of 9 months, hematopoietic stem cell
transplantation (HSCT) with umbilical cord graft was per-
formed due to SCID. Engraftment was with full donor chi-
merism without signs of graft-versus-host disease.
Transient CMV reactivation was successfully treated with
antiviral treatments. He had prolonged diarrhea preceding
the HSCT, and colitis-like symptoms continued after
HSCT needing long-lasting total parenteral nutrition.
Otherwise, with the recovering immunity, his pulmonary
problems abated and there were no signs of decreased
liver function. So far, due to young age and HSCT per-
formed with chemotherapeutic conditioning, we cannot
reliably evaluate the status of the hair and skin of this pa-
tient. After HSCT, he has been treated by a pediatric neur-
ologist and the parents have received genetic counseling.
There is no known family history of immunodeficiency or
malignancy.

Telomere length analysis

Due to the identification of variants in genes associated
with defective telomere function, we analyzed the length
of the telomeres in the four patients. All patients (P1.1,
P1.2, P2, and P3) showed short relative telomere length
below the 5th percentile compared to healthy controls of
the same age (Fig. 2). The integration of genetic findings,
clinical phenotype, and decreased telomere length led to
a diagnosis of DKC in P1.1 and P1.2, bone marrow fail-
ure in P2, and Hoyeraal-Hreidarsson syndrome in P3.

Discussion

In the present study, by using hypothesis-free WES we
identified disease variants in telomeropathy-associated
genes in four patients with clinical phenotypes ranging
from mild signs of DKC to SCID.

Telomeropathies include a range of pathological condi-
tions resulting from defective telomere biology, with great
variation in terms of clinical severity and age at diagnosis
[19]. Not all TBD patients display the classical triad of symp-
toms (skin pigmentation, nail dystrophy and oral leukopla-
kia), thus lacking the pathognomonic signs of DKC. In some
patients, bone marrow failure or immunodeficiency may be
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the only presenting symptom. The most severe phenotypical
variant of DKC, Hoyeraal-Hreidarsson syndrome (HHS),
may clinically present as SCID in children [7]. However,
bi-allelic mutations in the HHS-causing gene RTELI may
also lead to selective NK deficiency [20]. Wide phenotypic
variation may contribute to the diagnostic delay, especially
in adult patients, as seen in P1.1 and P1.2 who were not di-
agnosed until the age of 24 and 28 years. In addition to the
diverse clinical presentation, mutations in various genes
causing telomere-shortening may manifest with increasing
severity and shorter telomeres in successive generations, a
process called genetic anticipation [21]. Thus, TBD patients
with mild phenotype may have offspring potentially mani-
festing early in life with bone marrow failure or severe
immunological aberrations with aggravated complica-
tions like rapid deterioration of pulmonary function.
Due to the increasing severity in further generations,
these disease-causing variants tend to eventually disappear
from the pedigree. Likely for this reason, most of the
Finnish families with telomeropathies included in this
study appeared to have rare, novel mutations. This is fully
opposite to the majority of the rare recessive diseases seen
in Finland, which are typically caused by one major Finnish
founder mutation enriched in the population [22, 23].
Therefore, the possibility of a novel variant needs to be
considered for patients with TBD suspicion where no
known pathological variants have been found in a
targeted-variants approach.

Due to the heterogeneous clinical presentations and
the allelic heterogeneity, patients with clinical suspicion
of telomeropathies could benefit from the investigation
by WES or other applicable NGS-based assays. This is
successfully demonstrated in this study, where only one
patient within our cohort (P1.1) presented with the clas-
sical skin, nail and mucosal findings suggestive of DKC.
Furthermore, for one patient (P3) the genetic analysis
immediately produced the final molecular diagnosis of
HHS, while the initially observed clinical features (SCID)
could have led to the use of repeated mistargeted assays
not identifying the causal variants.

The identification of variants in TBD-associated genes
in patients showing seemingly distinct immune or haem-
atological conditions emphasizes the potential of WES
for discerning atypical traits of monogenic syndromes
and broadening the phenotypic spectrum of the disease
in addition to providing a prompt molecular diagnosis.
WES also allows screening for secondary causative vari-
ants potentially explaining the untypical phenotypic fea-
tures. Importantly, WES combined with telomere length
measurement further enables identification of novel
TBD causing gene defects, given that novel TBD-causing
genes are yet to be discovered. Because of the genetic
heterogeneity, measurement of telomere length can also
be considered for screening of undiagnosed patients with
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Fig. 2 Relative telomere length of the patients with telomere biology disorders. The relative telomere length (RTL) value of each sample (Y-axis) is
plotted against the individual's age (X-axis). Solid triangles indicate the four TBD-patients of the study (P1.1-P3). Open circles represent the 113
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clinical features compatible with TBDs. The quantitative
PCR-based assay used in this study is a cost-efficient
mean to complement the diagnostics in patients with
bone marrow failure or primary immunodeficiency.
From the genetic point of view, early diagnosis of TBD
is critical for the counseling provided to the families.
Once the disease-causing mutation(s) have been identi-
fied, assessment of allelic segregation should be system-
atically recommended to the entire family, particularly
in case of X-linked TBD. As exemplified by DKCI, the
disease may be carried silently in females and transmit-
ted to next generations in absence of prenatal diagnosis.
Also, some women may present with symptoms due to
skewed X-inactivation, therefore further studies of the
families are indicated [24]. From the clinical point of
view, the treating hematologists should consider the pos-
sibility of TBDs when evaluating patients with bone
marrow failure, apparently unexplained cytopenias or
myelodysplastic syndrome emerging at an early age, even
in the absence of the classic mucocutaneous triad.
Prompt diagnosis of a telomeropathy in case of atypically
presenting TBD, like aplastic anemia, is important to
bring to attention the need of monitoring other possibly
arising TBD-related organ complications. In addition,
immunosuppressive therapy is unlikely to be beneficial,
but patients may profit from treatment with anabolic

steroids aiming at improving cell counts. Furthermore,
patients with severe bone marrow failure can be evalu-
ated for hematopoietic stem cell transplantation. Know-
ledge of exact genetic diagnosis will help in planning the
preparative regimen and follow-up after HSCT, as well
as in the choosing of donors among family members.

Conclusions

Using hypothesis-free WES we identified novel disease
variants in TBD-associated genes in clinically undiag-
nosed Finnish patients. The use of WES helped the
clinicians to provide a prompt diagnosis of telomero-
pathy in the absence of the classic pathognomonic
signs. We highlight the relevance of achieving a mo-
lecular diagnosis and subsequent accurate genetic
counseling since effective treatments are lacking for
TBDs.

Additional files

Additional file 1: Figure S1. Categorization of the clinical phenotypes
of the patients in the studied dataset (n =212 patients). Categories
defined according to the 2017 Primary Immunodeficiency Disease
Committee Report [25]. (JPG 14 kb)

Additional file 2: Supplementary methods the detailed description of
the methods used for the molecular genetics analyses included in this
paper. (DOC 41 kb)
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