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The practice of genomic medicine stands to revolutionize our approach to medical care, and to realize this goal will
require discovery of the relationship between rare variation at each of the ~ 20,000 protein-coding genes and their
consequent impact on individual health and expression of Mendelian disease. The step-wise evolution of broad-
based, genome-wide cytogenetic and molecular genomic testing approaches (karyotyping, chromosomal
microarray [CMA], exome sequencing [ES]) has driven much of the rare disease discovery to this point, with
genome sequencing representing the newest member of this team. Each step has brought increased sensitivity to
interrogate individual genomic variation in an unbiased method that does not require clinical prediction of the locus
or loci involved. Notably, each step has also brought unique limitations in variant detection, for example, the low
sensitivity of ES for detection of triploidy, and of CMA for detection of copy neutral structural variants. The
utility of genome sequencing (GS) as a clinical molecular diagnostic test, and the increased sensitivity afforded by
addition of long-read sequencing or other -omics technologies such as RNAseq or metabolomics, are not yet fully
explored, though recent work supports improved sensitivity of variant detection, at least in a subset of cases. The utility
of GS will also rely upon further elucidation of the complexities of genetic and allelic heterogeneity, multilocus rare
variation, and the impact of rare and common variation at a locus, as well as advances in functional annotation of
identified variants. Much discovery remains to be done before the potential utility of GS is fully appreciated.
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Background

One of the central tenets of genomic medicine has been
the idea that undiagnosed Mendelian conditions have a
genetic etiology that is both discoverable and can be
used to guide development of preventative or thera-
peutic interventions. Mendelian conditions, while indi-
vidually rare, altogether impact millions of individuals
and families [1, 2], with over 8000 distinct disease traits
catalogued to date [3, 4]. Rare single nucleotide variants
(SNV), small insertion/deletion (indel) variants, and
copy number variants (CNV) have been demonstrated
to underlie many Mendelian conditions, leading to the
expectation that undiagnosed diseases are largely ‘single-
gene’ (monogenic) or ‘single-locus’ disorders [5, 6] that
follow classical Mendelian modes of inheritance. The
study of Mendelian conditions has had a substantial
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impact on our understanding of the genomic etiologies
and molecular mechanisms underlying rare human dis-
ease, and many discoveries have informed mechanistic
understanding of more common human conditions as
well (reviewed in Posey et al. [7]).

Implicit to the realization of genomic medicine in the
clinic is a comprehensive understanding of the relation-
ship between genes and even individual genotypes, and
their associated observed clinical phenotypes. Unbiased
approaches to interrogation of the genome, such as
chromosomal microarray (CMA) and exome sequencing
(ES), have driven disease gene discovery. Despite these
advances, only 20% (4081/~ 20,000) of identified human
protein-coding genes have an established association
with one or more disease traits (www.OMIM.org; 19
April 2019). Moreover, the extent to which variation at
more than one locus, allelic and locus heterogeneity, and
common variants contribute to Mendelian conditions is
not yet fully understood, underscoring the notion that
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disease gene discovery will not be complete with a simple
one-to-one cataloguing of genes and disease phenotypes.

Genome sequencing (GS) is the latest broad-based,
unbiased testing method to become more readily
available, on both research and clinical bases, as next-
generation sequencing costs have fallen [8]. Below, we
discuss the current landscape of Mendelian disease, the
utility of broad-based genomic testing in discovery and
diagnostics, and the potential utility of GS in both re-
search and diagnostic settings.

The current landscape of rare disorders
The progress of Mendelian disease discovery, with 20%
of human protein-coding disease genes having been de-
finitively associated with one or more human pheno-
types to date, also highlights the tremendous amount of
research that remains to be done. Consistent with these
data, the pace of novel disease gene discovery does not
show evidence of slowing: the US National Human
Genome Research Institute (NHGRI)/National Heart,
Lung, and Blood Institute (NHLBI)-funded Centers for
Mendelian Genomics, which aim to elucidate the mo-
lecular etiologies of all Mendelian conditions, report a
steady trajectory of 263 novel discoveries per year [7].
Similarly, OMIM has catalogued a steady increase in
both the number of phenotypes with an identified gen-
etic etiology, and the number of genes associated with a
clinical phenotype [9]. These and other worldwide ef-
forts have elucidated the molecular and genomic archi-
tecture of Mendelian conditions, and the broader
availability of ES has supported these discoveries.

Mendelian conditions have been associated with a
broad range of variant types, including SNVs, indels,
CNVs resulting from gains or losses of genetic material
that may result in simple duplications or deletions, or
more complex genomic rearrangements [10]. Copy neu-
tral genomic structural variants (SVs) and triplet repeat
expansions are also etiologic for some Mendelian condi-
tions. The ability to reliably detect many of these variant
types through different cytogenetic and molecular gen-
etic technologies has led to the elucidation of Mendelian
conditions that, at first glance, do not appear to follow
standard Mendelian modes of inheritance. Classically,
Mendelian conditions have been categorized as observ-
ing autosomal dominant (AD), autosomal recessive
(AR), X-linked (XL), or mitochondrial patterns of inher-
itance. Yet, the study of Mendelian conditions has re-
vealed the extent to which many rare diseases can be
characterized by digenic inheritance, dual molecular
diagnoses, mutational burden, and compound inherit-
ance of rare and common variants (Fig. 1).

Digenic inheritance, first described in 1994, is defined
by the requirement of 2 pathogenic variants at distinct,
independently segregating loci, for expression of a single
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disease condition [11]. Kajiwara et al described 3 families
with multiple individuals having retinitis pigmentosa
(MIM# 608133), which was known at the time to display
locus heterogeneity. They observed that all affected indi-
viduals had pathogenic variants in PRPH2, but curiously,
some unaffected relatives also shared these variants; the
risk to offspring of an affected individual was noted to
be less than the 50% expected for a dominant Mendelian
condition. Only affected individuals had both the variant
in PRPH2 and a second, null allele at an unlinked locus,
ROMI. More recent discoveries of digenic inheritance
include facioscapulohumeral dystrophy type 2 (FSHD2,
MIM# 158901), which results from rare variation in
SMCHDI1 on chromosome 18 and a permissive DUX4
allele on chromosome 4 [12]. The SMCHDI variant re-
sults in relaxation of the chromatin of DUX4, similar to
the effect of the D4Z4 array contraction in FSHDI1
(MIM# 158900), thus leading to a clinically identical
dystrophy phenotype [13].

Dual, or multiple, molecular diagnoses (Fig. 1), occur
when pathogenic variation at two or more loci leads to ex-
pression of two or more Mendelian conditions. Though
recognized since the 1960s in individuals who developed
hemolytic anemia in combination with thalassemia or
sickle cell trait [14, 15], the extent to which such cases
occur — and their breadth of molecular diagnoses has only
more recently begun to be revealed [16—23]. Pairs of Men-
delian conditions can present in an individual as blended
phenotypes that may result from overlapping or distinct
clinical features, developing contemporaneously or even
sequentially over time [16, 24]. The evolution of our un-
derstanding of Fitzsimmons syndrome (previously MIM#
270710) illustrates the challenges of relying on clinical as-
certainment for such cases [25, 26]. First described in 4
unrelated families as a Mendelian condition involving
intellectual disability, spastic paraplegia, short stature,
and cone-shaped epiphyses, further study demonstrated
that one twin pair diagnosed with Fitzsimmons syn-
drome had dual molecular diagnoses — trichorhinopha-
langeal syndrome (MIM# 190350) with a heterozygous
variant in TRPS1 plus Charlevoix-Saguenay type spastic
ataxia (MIM# 270550) due to pathogenic variants in
SACS [21, 27]. A third, unrelated individual with a clin-
ical diagnosis of Fitzsimmons syndrome was found to
have a TBLI1XRI variant responsible for part of the ob-
served phenotype, with no second molecular diagnosis
identified. Dual molecular diagnoses are now recog-
nized to account for at least 4% of cases for which
molecular testing is diagnostic [16—19, 23], with a diag-
nostic rate that is even higher (12%) in cohorts of
selected phenotypes [22] or in cases with apparent
phenotypic expansion (32%) [28]. This frequency is
quite likely to increase as more disease genes and geno-
type-phenotype relationships are discovered.
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Digenic Inheritance

Variants at 2 distinct loci required for
trait manifestation: 2 rare OR 1 rare +
1 common

Variants at 2 distinct loci lead to 2
independently segregating traits
Various combinations of inheritance
(AD+AD, AD+AR, AR+AR) are possible

Mutational Burden

Phenotype resulting from highly
penetrant variant is modified by
variation at additional loci

Incomplete Penetrance

Phenotype expression requires one
rare + one common variant

Variants may be at the same locus, or
distinct loci (digenic)

Dual Molecular Diagnoses '

Fig. 1 Complex modes of inheritance. Digenic inheritance involves variation at 2 loci that are required for expression of a single Mendelian
condition. Most often, both variants are rare, but there have been examples of one rare variant and one common variant at distinct loci
leading to expression of a single Mendelian condition. Dual molecular diagnoses occur when an individual has two Mendelian conditions
resulting from rare variants at two typically unlinked loci. Mendelian condition pairs can involve one or more modes of inheritance, for
example, AD+AD, AD+AR, or AR+ AR. Mutational burden is observed when the phenotype associated with a highly penetrant variant is
modified by the presence of one or more additional variants which by themselves are not penetrant. Incomplete penetrance can be
observed when disease expression requires compound inheritance of one rare and one common variant, either at the same locus, or at
unlinked loci. Distinct chromosomes are represented in blue. Rare variants of high penetrance are indicated by red ovals. Common and/
or low penetrance variants are indicated by grey ovals. AD - autosomal dominant; AR — autosomal recessive
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Multilocus mutational burden (Fig. 1) can impact the
expression of disease, both between and within families.
Genomic studies of neuropathy support a model
whereby an aggregation of rare variants in disease-
associated genes can influence clinical severity and can
contribute to common complex traits. In an analysis of
unrelated families of European descent with peripheral
neuropathy, a background mutational load impacting
proteins that function in the affected biological network
was identified in probands (1.8 additional rare missense
variants per individual) compared to controls (1.3, p =
0.007) [29]. Only 45% of probands were found to have a
highly penetrant, rare variant at a disease gene locus
[29]. This analysis was replicated in a distinct Turkish
cohort, and zebrafish models demonstrated an epistatic
interaction between identified gene pairs [29]. Suscepti-
bility to Parkinson disease can similarly be impacted by
a mutational load involving genes that impact lysosomal
function [30], and the age of onset of ALS can be modu-
lated by a mutational load in known ALS-associated
genes [31]. It is important to note that such multilocus

variation may involve variants at one nuclear genome-
encoded locus and one mitochondrial genome-encoded
locus. For example, nuclear-encoded TFBIM has been
proposed to influence the hearing loss phenotype associ-
ated with MT-NRNI (m.1555A >@G), which demon-
strates intrafamilial phenotypic variation from normal
hearing to profound congenital hearing loss [32]. These
reports illustrate how mutational burden within a path-
way or biological system can modify severity and onset
of disease expression.

Incomplete penetrance (Fig. 1) for a Mendelian condi-
tion can be a hallmark of more complex molecular patho-
genesis. Such conditions can result from a combination of
rare and common genetic variants at one or more loci. In
the case of nonsyndromic midline craniosynostosis due to
pathogenic rare variants in SMADS6, low penetrance (<
60%) is observed with SMADG6 variation alone, but 82%
(14/17) of affected individuals had an additional, common
BMP?2 allele, demonstrating digenic inheritance of 2 un-
linked loci, in this case with one rare variant and one com-
mon SNV [33]. Phenotypic expression of TBX6-associated



Posey Orphanet Journal of Rare Diseases (2019) 14:153

congenital scoliosis (TACS, MIM# 122600) similarly re-
quires both a rare loss-of-function (LoF) variant in TBX6
in trans with a common, hypomorphic TBX6 allele; the
LoF allele alone is not sufficient for phenotypic expression
[34-36]. Lethal pulmonary hypoplasia associated with
TBX4 or FGFIO0 also requires compound inheritance of a
rare LoF and rare or common hypomorphic allele for ex-
pression of disease [37].

Another way in which some Mendelian conditions de-
part from classical genetic expectations is the occurrence
of both dominant and recessive inheritance associated
with a single locus, and the observation of more than
one Mendelian condition associated with a single locus
[38-40]. Indeed, a review of disease-gene relationships
in OMIM demonstrates that nearly one-third of genes
with an established association with Mendelian disease
have been reported in association with 2 or more Mendelian
conditions (Fig. 2). Laminopathies, a set of human disease
phenotypes resulting from variation in LMNA, illustrate this
concept well, with diverse disease expression and inherit-
ance patterns including cardiomyopathies (MIM# 115200),
neuropathies (CMT2B1, MIM# 605588), skeletal myop-
athies (Emery Dreifuss muscular dystrophy; MIM# 181350,
616,516), Hutchinson-Gilford progeria (MIM# 176670), and
restrictive dermopathy (MIM# 275210). These varied
phenotypes result from proposed mechanisms that in-
clude differential allelic expression [41], haploinsuffi-
ciency associated with late-onset phenotypes [42],
dominant negative or GoF associated with early onset
phenotypes [42], and digenic inheritance [38, 43, 44].

The complex relationships between Mendelian condi-
tions and their associated genes and genotypes underscore

Page 4 of 10

the current challenges of clinical diagnostics and dis-
covery. Inherent to the goal of identifying and charac-
terizing the molecular architecture of Mendelian
conditions is ability to detect with sufficient sensitivity
and specificity the relevant types of variants. In the next
section, we discuss broadly available cytogenetic and
molecular genomic assays in the context of Mendelian
conditions.

The advantage of an unbiased assessment

The simple wisdom conveyed by the “streetlight effect”
is that by limiting one’s search to the most accessible re-
gions of the genome, one introduces observational bias
to a given exploration. In the context of genetic and
genomic testing, such bias occurs when one limits dis-
coveries or molecular diagnoses to those which are an-
ticipated. Genome-wide analyses are, by contrast,
unbiased in the sense that they do not pre-suppose a
particular gene, variant, or locus, as etiologic for a given
condition. Karyotyping was first used as a diagnostic tool
in 1959, when two clinically recognized conditions were
revealed to be caused by chromosomal anomalies: tri-
somy 21 leading to Down syndrome, and an extra X
chromosome leading to Klinefelter syndrome [45, 46].
As techniques to stain the DNA, such as Giemsa-
banding (G-banding) were developed, the utility of
karyotyping expanded from identification of simple
chromosomal anomalies (trisomies, monosomies) to
more complex structural rearrangements including dele-
tions, duplications, and translocations, and enabled the
field to contextualize these in the setting of several well-
characterized clinical phenotypes. Indeed, the unbiased

Percent of Disease Genes with 1 or
more associated Mendelian Conditions

Variants in LMNA associated with multiple Mendelian conditions

* Emery-Dreifuss muscular dystrophy can follow dominant or recessive modes of inheritance

*
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Fig. 2 Disease genes can be associated with more than one Mendelian condition. Review of genes associated with disease phenotypes in OMIM
(January 2019) reveal that 31% of disease genes have more than one disease phenotype association, with nearly 6% associated with more than 3
Mendelian conditions. Rare variants in LMNA are associated with a variety of both dominantly and recessively inherited phenotypes. LTD - lamin
tail domain
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‘genome-wide’ assessment that karyotyping provided en-
abled many of these discoveries.

Chromosomal microarray (CMA) techniques brought
increased resolution for genome-wide detection of
CNVs, and the ability to detect uniparental isodisomy
and parental consanguinity. Various studies comparing
the diagnostic utility of CMA and karyotyping in pre-
and post-natal samples demonstrated an increased diag-
nostic rate of ~ 6% in postnatal cases, and 2% in prenatal
cases [47-49]. One key outcome of these studies was the
identification of abnormal findings detected by karyo-
type, but not by CMA, occurring in 0.9-1.4% of studied
cases. A majority of the abnormalities not detected by
CMA either exhibited mosaicism, or involved apparently
balanced chromosomal rearrangements that would ap-
pear copy neutral by array-based technologies. While
reciprocal and Robertsonian translocations, which are
copy neutral SVs, typically have no direct phenotypic
consequence, they increase the risk of unbalanced trans-
locations or chromosomal anomalies in the subsequent
generation. In rare cases, they may also lead to disrup-
tion of a Mendelian disease gene and consequent disease
expression: for example, study of two individuals with
clinical diagnoses of Sotos syndrome who were found to
have translocations with breakpoints disrupting 5q35 ul-
timately led to the identification of NSDI as the Sotos
syndrome gene (MIM# 117550) [50, 51].

Exome sequencing (ES) became the next step in the
evolution of genome-wide testing, using next-generation
sequencing (NGS) technologies to focus on the coding
portions of the genome, in which over 95% of disease-
causing variants have been estimated to be located [52].
From both a clinical and research standpoint, the advan-
tage of ES lies in the ability to interrogate almost all ~
20,000 human protein-coding genes simultaneously for
rare SN'Vs and indels known or suspected to be etiologic
for disease. This testing has enabled the identification of
dual molecular diagnoses in clinical referral cohorts
[16-22], and supports the interrogation of genomic data
for multilocus variation impacting phenotypic expression
[28-30]. Many groups have analyzed the diagnostic utility
of ES in a clinical referral setting, and found that molecu-
lar diagnoses are identified in 25-50% of sequential clin-
ical referrals, with a somewhat lower diagnostic rate in
cohorts of adult (> 18 years) individuals [17-20, 53, 54].
Objective reanalysis of clinical cases can further increase
clinical diagnostic yield [55]. Other groups have compared
the diagnostic utility of ES to panel-based testing,
essentially comparing analysis of ES data to a ‘virtual
gene panel’ designed from masked exome variant
data. In a comparison of ES to a 55-gene panel in in-
dividuals across all ages with peripheral neuropathy,
ES increased diagnostic yield from 22 to 38% [56]. A
subsequent study of 145 children with suspected
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Mendelian disease demonstrated that of 57 cases for
which a diagnosis was obtained by ES and for which phy-
sicians had recommended gene panel alternatives, nearly
one quarter (13/57, 23%) would have remained undiag-
nosed by any of the proposed alternative gene panels [57].
Despite the demonstrated increase in diagnostic utility for
ES, several key challenges remain to improving the sensi-
tivity of ES for detection of etiologic variants: uniformity
of sequencing coverage particularly in GC-rich regions,
consistent detection and correct annotation of indels [58,
59], and identification of CNVs, particularly small CNVs
involving only one or a few exons [60—63]. Notably, an
analysis of the diagnostic utility of ES compared to ES +
CMA demonstrated a higher diagnostic rate when ES and
CMA are performed concurrently, highlighting a contin-
ued role for CMA in clinical diagnostics [64].

The utility of these unbiased genome-wide technolo-
gies, as tools for both clinical diagnostics and research-
based discovery, is clear. While it is intuitive to antici-
pate that larger NGS studies with greater coverage of the
genome will be of greater utility, lessons from karyotyp-
ing, CMA, and ES serve as reminders to consider care-
fully the limitations of each testing method. In the
following section, we explore the potential added utility
of genome sequencing (GS) in the clinic and the re-
search laboratory.

The promise of genome sequencing in the clinic

While no longer a new method, GS has fairly recently
become more available for clinical diagnostic testing.
Analyses of the diagnostic utility of GS have ranged from
21 to 73%, impacted by phenotypes and individual ages
studied [65—-69]. Comparisons of the diagnostic utilities
of GS and ES have been fairly limited to date, but a few
groups have shown a modest increase in diagnostic rates
of GS; these findings highlight coverage of both coding
and non-coding sequences, with typically lower fold-,
but more consistent, nucleotide-by-nucleotide coverage
of GC-rich regions (including first exons) compared to
ES, improved detection of CNVs, and more complete
detection of variants associated with common pharma-
cogenomic alleles. Alfares et al studied 108 individuals
for whom array comparative genomic hybridization
(aCGH) and ES were non-diagnostic, and identified 7
cases for which GS identified a molecular diagnosis:
these cases included a PHOX2B repeat expansion, a
large deletion encompassing TPM3, and a deep intronic
variant in TSC2, as well as 3 individuals with a missense
variant in ADAT3 and 1 individual with a missense
variant in SLC35A2 that were simply not detected by
the initial ES (though the authors noted that BAMs
were not available for re-analysis of ES data in these 4
cases) [70]. An additional 3 molecular diagnoses (all cod-
ing variants) not detected on initial ES, were identified by
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GS and subsequent ES reanalysis. Some have also consid-
ered the potential utility of GS as a screening, rather than
diagnostic, study. In an analysis of molecular findings of
screening GS in a cohort of apparently healthy adults, 22%
(11/50) were identified to have a previously unknown dis-
ease risk, 100% (50/50) were found to be a carrier for an
AR Mendelian condition, 96% (48/50) were identified as
having a pharmacogenomic variant impacting drug me-
tabolism, and between 6 and 40% of individuals were iden-
tified as being in the top 10th centile of risk by polygenic
risk score analysis for 8 cardiometabolic conditions [71].
Another potential advantage of GS is the ability to in-
terrogate rare variants encoded by the mitochondrial
genome. While some groups have taken advantage of
off-target reads from ES and other capture-enriched
NGS datasets to identify mitochondrial genome-encoded
variants, [72, 73] the presence of a high fraction of nu-
clear mitochondrial DNA segments (NUMTs) in the nu-
clear genome, coupled with the relatively low read depth
coverage of the mitochondrial genome using these ap-
proaches can confound variant calling, particularly for
heteroplasmic variants. The application of a single pair
of back-to-back primers to amplify the mitochondrial
genome can be used to eliminate NUMT contamination
and achieve high-coverage mitochondrial genome se-
quence [74, 75]. In the clinical setting, such testing could
be ordered concurrently with ES or GS, or as part of a
step-wise diagnostic approach — this requires a priori
diagnostic suspicion of a mitochondrial condition. Mito-
chondrial genome-encoded variants may also be identi-
fied from GS data, and this has recently been illustrated
by the identification of a rare variant in MT-ND4
(m.11778G > A) conferring a diagnosis of Leber heredi-
tary optic neuropathy (MIM# 535000) [76], and the
identification of a rare homoplasmic variant in MT-T7
(m.4300A > G) conferring a diagnosis of primary familial
hypertrophic cardiomyopathy [77]. Methods develop-
ment to detect lower frequency heteroplasmic mito-
chondrial variants from GS datasets is underway [78],
suggesting that GS may become a viable option for inter-
rogation of both nuclear and mitochondrial genomes
with high sensitivity and specificity in the near future.
One weakness of the lower-fold coverage of GS is the
reduced sensitivity to detect and correctly identify mo-
saic variants, particularly those of low allele fraction
[79]. The power to detect mosaic variants is influenced
by the allele fraction of the variant and the depth of
coverage, with lower allele fraction variants requiring a
high depth of coverage. Studies modeling this relation-
ship between allele fraction and read depth have indi-
cated that the detection of somatic mosaicism as low as
5% at 95% sensitivity requires a read depth of at least
140-fold, which is relatively cost-prohibitive in the con-
text of GS [80]. One approach to address the potential
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for parental germline mosaicism for identified, appar-
ently de novo variants from trio-GS data is the applica-
tion of high read depth NGS to further interrogate
genomic positions of interest [81].

In clinical practice, diagnostic reporting of ES and GS
findings focus primarily on established disease genes,
and variants that are known or strongly suspected to be
pathogenic based on objective evidence [82]. Improved
functional annotation of noncoding variants identified
by GS will be necessary to resolve those that are truly
pathogenic from those that are benign, and this repre-
sents a key step in increasing the diagnostic yield and
clinical utility of GS. Despite the potential opportunity
for GS-based diagnostic testing, complete realization of
its diagnostic utility in the clinic awaits further discovery
in the field of Mendelian disease and additional advances
in computational and technological approaches to gen-
omic analyses.

Exploring the potential of genome sequencing through
research

Genome sequencing in the research setting offers the
opportunity to explore the full contribution of non-
coding variants -- including SNV, CNV, and copy neutral
structural variants (SV) -- to Mendelian disease. Cer-
tainly, many examples of non-coding variation contrib-
uting to Mendelian disease have been described, such as
the ELP1 (formerly IKBKAP) variant that affects splicing
observed in individuals of Ashkenazi descent with famil-
ial dysautonomia (MIM# 223900) [83, 84], low frequency
regulatory SNVs in RBMS8A in trans with a 1q21.1 dele-
tion in individuals with thrombocytopenia-absent radius
syndrome (TAR, MIM# 274000) [85], or the poly-
morphic poly-thymidine tract in intron 9 of CFIR that
can impact expression of cystic fibrosis (MIM# 219700)
in the presence of the p.Argl17His CFTR variant in cis
[86—88]. Noncoding SVs affecting regulatory regions
have also been associated with Mendelian disease, with
several examples of loci for which distinct SVs produce
very distinct phenotypes [6, 89]. For example, SHH has
been observed in association with (1) holoprosencephaly
and cleidocranial dysplasia in a woman with a de novo
6;7 reciprocal translocation with one breakpoint 15 kb
upstream of SHH [90], and (2) pre-axial polydactyly-
hypertrichosis in a family found to have a 2 kb deletion
upstream of the SHH promoter [91]. These reports illus-
trate the complexity of genotype-phenotype relationships
observed with noncoding SNVs and SVs, and highlight
the tremendous potential for discovery of novel molecu-
lar mechanisms afforded by GS.

To comprehensively address genotype-phenotype rela-
tionships involving noncoding variants, the field will
need to improve upon current methods for interpret-
ation of the functional and regulatory effects of novel
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noncoding SNVs and SVs. This will almost certainly re-
quire a multi-pronged approach, with efforts aimed at
improved computational tools for predicting functional
effects of noncoding variants [92—94], development of in
vitro or cell-based functional assays applicable to gene
regulation or protein function, and concomitant analysis
with other broad-based ‘-omics’ approaches such as
RNAseq and metabolomics. Several recent studies have
demonstrated the potential for success with these
methods. Gasperini et al recently reported the large-
scale perturbation of 5920 candidate gene enhancer ele-
ments, and used single-cell transcriptome data to deter-
mine the effects on nearby gene expression; this
approach yielded 664 potential cis enhancer-gene pairs
[95]. Others have used RNAseq to search for aberrant
splicing or expression levels attributable to noncoding
variants identified by GS. This has worked particularly
well for identifying variants with tissue-specific effects in
muscle and mitochondrial phenotypes [96, 97]. Analysis
of de novo variants from trio-GS (proband + parents)
data is yet another approach to identify putative patho-
genic noncoding variants in individuals with apparently
sporadic disease [98], and a deep-sequencing approach
can enable detection of low-level parental germline mo-
saicism, which can impact recurrence risks within a fam-
ily and may be undetected by GS and/or targeted
dideoxy Sanger sequencing of parental DNA [99].
Though many efforts to address the role of non-coding
variation in disease have focused on identifying etiologic
rare variants, the relationship between combinations of
rare and common variants at one or more loci in disease
is also not yet fully explored [34—-37].

Expansion of GS techniques to include long-read se-
quencing enables genome assembly with greater access
to complex regions of the genome and improved map-
ping to the human genome reference sequence. Long-
read sequencing supports identification of SVs, particu-
larly copy neutral changes not identified by CMA or
short-read sequencing approaches; this approach was re-
cently applied to 15 individual genomes across multiple
ethnicities to identify and sequence resolve over 99,000
SVs [100-103]. Long-read GS also supports phasing of
variants over longer genomic segments [100—102]. These
advantages have been balanced by 2 key tradeoffs: (1) in-
creased sequencing costs which can range from $750-
1000/Gb for long read technologies, compared to $7-
250/Gb for short read technology; and (2) the potential
for increased sequencing error rates which can range
from <1 to 13% for long read technologies, compared to
0.1-1.0% for short read technologies [104]. Recent work
has demonstrated a move toward significantly lower
error rates and improved cost-effectiveness with long-
read sequencing [105, 106]. The potential diagnostic effi-
cacy of SV detection by long-read GS is supported by a
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recent report of an individual diagnosed with Carney
complex due to a ~2kb deletion involving exon 1 of
PRKARIA, a CNV not detected using short-read gen-
ome sequencing [107]. Interrogation of complex re-
gions of the genome, such as HLA typing for transplant
candidates, and loci with known pseudogenes, are add-
itional potential applications for long-read technologies
[108, 109].

As GS is increasingly used in the clinical and diagnos-
tic settings, the field will need to consider how best to
weigh factors such as cost, error rates, sequencing
breadth and depth of coverage, and molecular diagnostic
utility in determining whether ES, GS, GS combined
with other -omics, or even reanalysis of existing variant
data are most appropriate for a given case or cohort.

Conclusions

As with each of the genome-wide, unbiased cytogenetic
and molecular techniques that have been developed, GS
offers the potential for further growth of clinical molecu-
lar diagnostics, driven by new discovery of genes and
molecular mechanisms associated with Mendelian dis-
ease. More work is needed to develop methods to sup-
port prioritization and functional classification of
variants identified by GS, particularly non-coding and
copy neutral structural variants, as well as methods to
fully interrogate trinucleotide repeats and more com-
plex, repetitive and/or GC-rich regions of the genome
before the utility of GS is fully realized.
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