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A new UHPLC‑MS/MS method 
for the screening of urinary oligosaccharides 
expands the detection of storage disorders
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Abstract 

Background:  Oligosaccharidoses are storage disorders due to enzymatic defects involved in the breakdown of the 
oligosaccharidic component of glycosylated proteins. The defect cause the accumulation of oligosaccharides (OS) 
and, depending on the lacking enzyme, results in characteristic profiles which are helpful for the diagnosis. We devel‑
oped a new tandem mass spectrometry method for the screening of urinary OS which was applied to identify a large 
panel of storage disorders.

Methods:  The method was set-up in urine and dried urine spots (DUS). Samples were analysed, without derivatiza‑
tion and using maltoheptaose as internal standard, by UHPLC-MS/MS with MRM acquisition of target OS transitions, 
including Glc4, the biomarker of Pompe disease. The chromatographic run was < 30 min. Samples from patients with 
known storage disorders were used for clinical validation.

Results:  The method allowed to confirm the diagnosis of oligosaccharidoses (sialidosis, α-/β-mannosidosis, fucosido‑
sis, aspartylglucosaminuria) and of GM1 and GM2 (Sandhoff type) gangliosidosis, by detecting specific OS profiles. In 
other storage disorders (mucolipidosis II and III, mucopolysaccharidosis type IVB) the analyisis revealed abnormal OS 
excretion with non-specific profiles. Besides Pompe disease, the tetrasaccharide Glc4 was increased also in disorders 
of autophagy (Vici syndrome, Yunis-Varon syndrome, and Danon disease) presenting cardiomuscular involvement 
with glycogen storage. Overall, results showed a clear separation between patients and controls, both in urine and in 
DUS.

Conclusion:  This new UHPLC/MS-MS method, which is suitable for rapid and easy screening of OS in urine and DUS, 
expands the detection of storage disorders from oligosaccharidoses to other diseases, including the novel category of 
inherited disorders of autophagy.

Keywords:  Oligosaccharides, Storage disorders, Pompe disease, Autophagy, Danon disease, Vici syndrome, Yunis-
varon syndrome
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Background
The new classification of storage disorders includes nine 
disease categories (i.e. oligosaccharidoses, mucolipidoses, 
mucopolysaccharidoses, sphingolipidoses, neuronal 
ceroid lipofuscinosis, disorders of lysosomal cholesterol 
metabolism, disorders of lysosomal transport or sort-
ing, disorders of lysosomal protein degradation, and the 
recently identified inherited disorders of autophagy) and 
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accounts for over 65 different inherited disorders [1]. Oli-
gosaccharidoses are due to defects of lysosomal enzymes 
involved in the catabolic pathway for the breakdown of 
the oligosaccharidic component of glycosylated proteins 
[2]. The glycosidic groups, composed of fucose, mannose, 
sialic acid, galactose, and N-acetylglucosamine residues, 
to form glycoproteins are either N-linked (to aspara-
gine) or O-linked (to serine or threonine) [3]. Enzymatic 
defects of this catabolic pathway cause the accumulation 
of oligosaccharides (OS) and, depending on the lack-
ing enzyme, result in characteristic profiles of urinary 
OS, which are helpful for the diagnosis [4]. The differ-
ent oligosaccharidoses share common clinical features, 
which include facial dymorphisms, dysostosis multiplex, 
hepato/splenomegaly, developmental delay and neuro-
logical signs, making difficult the differential diagnosis 
[2]. Biochemically, OS analysis is the first step for the 
diagnosis of oligosaccharidoses [5]. The initial methods 
to analyze urinary OS were based on thin layer chro-
matography (TLC), but this assay has limited analytical 
sensitivity and specificity due to interfering compounds 
derived, especially in early infancy, from the diet or from 
medications [5–7].

A more powerful tool for the analysis of OS has been 
provided thanks to the introduction in diagnostic labo-
ratories of mass spectrometry (MS), which allows to 
characterize the different OS species through specific 
multiple reaction monitoring (MRM) transitions. The 
analysis with a triple quadrupole after sample derivatiza-
tion enabled the detection of characteristic OS profiles 
in the urine of patients with different types of oligosac-
charidoses and with other storage disorders, and was 
also suitable for prenatal diagnosis in amniotic fluid [3, 8, 
9]. Other methods, utilizing capillary high performance 
anion-exchange chromatography mass spectrometry 
(HPAEC) or matrix-assisted laser desorption ioniza-
tion time-of-flight (MALDI-TOF/TOF), with or without 
sample derivatization, have been developed for struc-
tural studies and for disease screening [10, 12]. Piraud 
et al. adapted a MALDI-TOF/TOF based method [12] to 
a triple quadrupole analyzer, and built a powerful tech-
nique suitable in diagnostic laboratory for the screen-
ing in urine of a large number of oligosaccharidoses 
and for prenatal diagnosis in amniotic fluid [4]. More 
recently, an ultra-high performance liquid chromatog-
raphy mass spectrometry (UHPLC-MS/MS) method 
for urinary OS analysis requiring sample derivatization 
has been reported [13]. The rapid evolution of all these 
techniques has potentially expanded the list of identifi-
able diseases to other storage disorders which share with 
oligosaccharidoses an abnormal excretion of compounds 
related to this catabolic pathway [3, 4, 8–13]. Further-
more, in Pompe disease, a glycogen storage disorder due 

to deficiency of the lysosomal enzyme acid α-glucosidase, 
the profile of urinary OS by TLC analysis shows the 
presence of a large band which was characterized by 
UHPLC-MS/MS analysis as the tetrasaccharide 6-α-D-
glucopyranosyl-maltotriose (Glc α 1-6Glc α 1-4Glc α 
1-4Glc, designed as Glc4) [14, 15]. More recently, Glc4 
has been suggested as a target biomarker for diagno-
sis, monitoring disease progression and to evaluate the 
response to enzyme replacement therapy in Pompe dis-
ease [16, 17]. Indeed, an abnormal OS profile by TLC 
analysis [18, 19] as been reported in Yunis-Varon syn-
drome, an inherited disorder of autophagy, a novel dis-
ease group listed among storage disorders [1].

In this study, we report a new UHPLC-MS/MS method, 
not requiring sample derivatization, for the screening of 
OS in urine and in dried urine spots (DUS) which was 
applied to identify a large panel of storage disorders.

Methods
Samples collection and complience with ethic guidelines
Controls’ and patients’ urines and DUS samples were col-
lected after obtaining informed consent. The work has 
been carried out in accordance with “The Code of Eth-
ics of the World Medical Association (Declaration of 
Helsinki) for experiments involving humans”; “Uniform 
Requirements for manuscripts submitted to Biomedi-
cal journals” published by the International Commit-
tee of Medical Journal Editors. Samples were obtained 
from patients—followed by the Division of Metabo-
lism, Bambino Gesù Childrens Hospital in Rome, Italy 
and by the Department of Pediatrics, Metabolism Unit, 
Hacettepe University, Ankara, Turkey—with a con-
firmed diagnosis made through enzymatic and/or 
genetic analysis or from positive quality controls pro-
vided by the European Research Network for evaluation 
and improvement of screening, Diagnosis and treat-
ment of Inherited disorders of Metabolism (ERNDIM). 
Urine samples (n = 42) were obtained from 27 patients, 
age 7  months- 17  years, affected by the following stor-
age disorders: sialidosis (n = 1), α-mannosidosis (n = 2), 
β-mannosidosis (n = 1), fucosidosis (n = 3), aspartylglu-
cosaminuria (n = 1), GM1 gangliosidosis (n = 14), GM2 
gangliosidosis (n = 6), mucolipidosis type II (n = 3) and 
mucolipidosis type III (n = 2), Pompe disease (n = 4), 
Vici syndrome (n = 4), Danon disease (n = 1). Samples 
were kept frozen at − 20  °C until analysis. DUS samples 
(n = 29) were obtained from 25 patients, age 1–18 years, 
affected by the following storage disorders: sialidosis 
(n = 1), α-mannosidosis (n = 3), β-mannosidosis (n = 1), 
fucosidosis (n = 3), aspartylglucosaminuria (n = 1), 
GM1 gangliosidosis (n = 4), GM2 gangliosidosis (n = 1), 
mucolipidosis type II (n = 1), mucolipidosis type III 
(n = 2), mucopolysaccharidosis type IVb (n = 5), Pompe 
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disease (n = 2), Vici syndrome (n = 3) and Yunis-Varon 
syndrome (n = 1), Danon disease (n = 1). The control 
urine (n = 75), age 2 months- 17 years and DUS (n = 12), 
age 1  months -18  years, samples were obtained from 
healthy subjects referred for routine urine laboratory 
analysis. Urine samples were kept at − 20 °C and DUS at 
room temperature until analysis.

A positive internal quality control (iQC) mix, con-
taining an equal part of lyophilized urine from patients 
affected by sialidosis, α-mannosidosis, β-mannosidosis, 
fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, 
GM2 gangliosidosis, Pompe disease provided by ERN-
DIM, was reconstituted, aliquoted and stored at − 20 °C.

Urine samples treatment
Urine samples were ultra-filtered with an Amicon Ultra 
filter 0.5 mL 3 K 96 PK (Merck KGaA, Darmstadt, Ger-
many) and centrifuged for 9  min at 13.000  rpm. Ultra-
filtered urine were diluted with milli-Q water (Milli-Q 
Advantage A10 System, Merckmillipore, Merck KGaA, 
Darmstadt, Germany) to obtain a final creatinine con-
centration of 1  mM. The creatinine concentration was 
determined with the Jaffé method. Samples with a creati-
nine concentration < 1 mmol/L were not diluted and were 
adjusted at a creatinine concentration of 1 mM after the 
analysis.

Fifty μL of normalized ultra-filtered urine were mixed 
in a glass tube with 20  µL of the internal standard (IS) 
working solution [maltoheptaose (Glc7) 170 µmol/L dis-
solved in H2O], 130  μL of reconstitution buffer [37.5% 
acetonitrile (ACN)/H2O containing 0.02% formic acid 
(FOA) (v/v)], and vortexed.

Dried urine spot (DUS) samples treatment
To prepare DUS samples 2 ml of urine were spotted, both 
in the laboratory and in the clinic, on the entire absorbing 
part of the card commonly used for newborn screening 
(EBF Eastern Business Forms, INC., SC, US) and dried 
at room temperature for at least 2 h. DUS were shredded 
and mixed in deionized water for 30 min for the extrac-
tion. The entire absorbing part of the newborn screening 
card was used for the extraction. The extract was then 
diluted with Milli-Q water to obtain a creatinine con-
centration of 1  mM. The extract creatinine concentra-
tion was determined with the Jaffé method. Extracts with 
a creatinine concentration < 1  mmol/L were not diluted 
and were adjusted at a creatinine concentration of 1 mM 
after the analysis. Fifty  μL of the normalized extract 
from DUS were mixed in a glass tube with 20  µl of the 
IS working solution, 130 μL of reconstitution buffer, and 
vortexed.

UHPLC‑MS/MS
Five μL of the finally urine or DUS samples respectively 
prepared as described in “Urine samples treatment” and 
“Dried urine spot (DUS) samples treatment” sections, 
were injected in the UHPLC system Agilent 1290 Infin-
ity II (Agilent Technologies, CA, US) for the chromato-
graphic analysis. The chromatography was performed 
with a Luna Omega SUGAR 100 column Å, 150 × 2.1 mm 
(Phenomenex, CA, US) at a flow rate of 0.5  mL/min. 
The mobile phase was a mixture of ammonium formate 
(Sigma-Aldrich Steinheim, Germany) 5  mM + 0.05% 
(v/v) FOA (> 96% purity, reagent grade Sigma-Aldrich 
Steinheim, Germany) dissolved in water (A) and ammo-
nium formate 5 mM + 0.05% (v/v) FOA dissolved in ACN 
(≥ 99.9% purity for HPLC, gradient grade, Sigma-Aldrich 
Steinheim, Germany)/ water 90/10 (B). The gradient 
program is showed in Table  1. The total run time was 
27.50 min (15.50 min for detection and 12.00 min for col-
umn reconditioning) at a controlled column temperature 
of 40 °C.

The UHPLC system was interfaced to a triple quadru-
pole 4500 SCIEX QTrap (AB Sciex, MA, US) equipped 
with a turbo ion spray source heated at 400 °C. Nitrogen 
was used as curtain and collision gas. Common MS/MS 
parameters expressed in arbitrary units were the follow-
ing: curtain gas (CUR), 20; ion source gas 1 (GS1), 20; 
ion source gas 2 (GS2), 20; collision-activated dissocia-
tion gas (CAD), 9; temperature (TEM), 400. In positive 
mode MS/MS parameters were: ion spray voltage (ISV), 
5.500  V; entrance potential (EP), 8  V; cell exit potential 
(CXP), 10 V; in negative mode MS/MS parameters were: 
ISV, − 4.500 V; EP, − 8 V; CXP, − 10 V.

Oligosaccharides detection
MRM was used for spectra acquisition in positive and 
negative modes, switching the polarity within a sin-
gle run. Data acquisition and chromatographic peak 

Table 1  Optimized UHPLC conditions for  the  separation 
of oligosaccharide components

A: ammonium formate 5 mM + 0.05% (v/v) formic acid in water; B: ammonium 
formate 5 mM + 0.05% (v/v) formic acid in acetonitrile/water 90/10

Time (min) A% B% Flow rate 
(ml/min)

0 5 95 0.5

5 60 40 0.5

13.30 60 40 0.5

13.50 30 70 0.5

15.50 30 70 0.5

17.50 5 95 0.5

27.50 5 95 0.5
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integration were conducted using the Analyst software 
(version 1.7 with HotFix 2, ®2017 AB SCIEX, Canada), 
using Glc7 as IS. For each sample, ratios of peak area/
Glc7 was calculated for single MRM transitions. For each 
MRM, the median (50th percentile) of at least 10 control 
samples was calculated and results were expressed as 
multiple of the medians (MoM).

The positive iQC was treated with the same procedure 
of samples and added to each batch series to control 
chromatography quality and the sensitivity of the tandem 
mass spectrometer.

Results
Chromatography and mass spectra
Figure  1 shows the extract ion chromatogram (XIC) 
of a selection of storage disorders (sialidosis, α- and 
β-mannosidosis, fucosidosis, aspartylglucosaminuria, 
GM1 and GM2 gangliosidosis, Pompe disease, Vici syn-
drome, Yunis-Varon syndrome and Danon disease) pre-
senting a characteristic OS profile [4, 15].

Assay validation
For each MRM transition, linearity was estimated with 
calibration curves created using three samples at differ-
ent urine concentrations and calculating the correlation 
coefficient (R2). The differently concentration samples 
were prepared by mixing and vortexing in a glass tube, 
as follow: 50 μL of normalized ultra-filtered urine, 20 µL 
of the IS working solution and 130 μL of reconstitution 
buffer; 100  μL of normalized ultra-filtered urine, 20  µl 
of the IS working solution and 80  μL of reconstitution 
buffer; 150  μL of normalized ultra-filtered urine, 20  µL 
of the IS working solution and 30  μL of reconstitution 
buffer. In fresh urine, the R2 ranged from 0.8039 to 0.9999 
in the positive mode and from 0.7270 to 0.9999 in the 
negative mode. In DUS, R2 ranged from 0.7701 to 0.9996 
in the positive mode and from 0.8340 to 0.9995 in the 
negative mode.

For each MRM transition, the intra-day precision, 
expressed as CV%, was assessed by injecting and ana-
lyzing 10 times in the same run 5 µL of the finally urine 
or DUS samples respectively prepared as described in 

“Urine samples treatment” and “Dried urine spot (DUS) 
samples treatment” sections; the inter-day precision, 
expressed as CV%, was assessed by injecting and analyz-
ing 10 times for three different days 5  µL of the finally 
urine or DUS samples prepared respectively as described 
in “Urine samples treatment” and “Dried urine spot 
(DUS) samples treatment” sections.

The intra-day precision ranged from 6 to 24% in the 
positive and negative mode in fresh urine, from 5 to 25% 
in the positive mode and from 2 to 24% in the negative 
mode in DUS. The inter-day precision ranged from 9 to 
25% in the positive mode and from 8 to 23% in the nega-
tive mode in fresh urine, from 7 to 26% in the positive 
mode and from 5 to 24% in the negative mode in DUS. 
Validation data of linearity, intra-day and inter-day preci-
sion in urine and DUS are reported in Additional file 1: A 
and B.

Detection of oligosaccharides in storage disorders
The study allowed to confirm the diagnosis in all disor-
ders presenting known OS profiles. Additional file  2: A 
and B illustrate the MoM results obtained from all ana-
lyzed samples. Each sample was considered positive for 
a specific disorder when the MoMs of all qualifying and 
quantifying transitions were increased compared to con-
trols at least 5 times for fresh urine and 2 times for DUS. 
Some disorders presented with a specific OS profile while 
in other diseases, the analysis revealed abnormal OS 
excretion but not-specific profiles. Overall, DUS samples 
showed lower background interferences when compared 
to urine samples.

Disorders with a specific OS profile
Figure 2 shows the scatter charts of the most character-
istic transitions in disorders showing specific OS profiles 
[4].

Sialidosis  Three negative MRM transitions were 
selected as the most characteristic for the sialyl-OS 
NeuAc-Hex3-HexNAc2 and one was used for quantita-
tive analysis. We analyzed 1 urine and 1 DUS sample 
from one patient and both quantitative and qualitative 

Fig. 1  Chromatographic profiles of the examined storage disordes and of the internal standard (IS). The characteristic MRM transitions, in positive 
(+) and negative (−) modes, for each disorder are marked with different colours. Panel A: (1) extract ion chromatogram (XIC) of the seven positive 
MRM transitions characteristic for the IS maltoheptaose Glc7; (2) XIC of the seven negative MRM transitions characteristic for Glc7; (3) XIC of 
the three negative MRM transitions characteristic for sialidosis; (4) XIC of the eight positive MRM transitions characteristic for α-mannosidosis; 
(5) XIC of the nine positive MRM transitions characteristic for β-mannosidosis; (6) XIC of the eight negative MRM transitions characteristic for 
β-mannosidosis. Panel B: (7) XIC of the six positive MRM transitions characteristic for fucosidosis; (8) XIC of the two negative MRM transitions 
characteristic for Pompe disease, Vici syndrome, Yunis-Varon syndrome, and Danon disease; (9) XIC of the five positive MRM transitions characteristic 
for aspartylglucosaminuria; (10) XIC of the ten negative MRM transitions characteristic for aspartylglucosaminuria; (11) XIC of the five positive MRM 
transitions characteristic for GM1 gangliosidosis; (12) XIC of the seven positive MRM transitions characteristic for GM2 gangliosidosis

(See figure on next page.)
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1) maltoheptaose IS (+)

2) maltoheptaose IS (-) 

3) sialidosis (-) 

4) α-mannosidosis (+)

5) β-mannosidosis (+)

6) β-mannosidosis (-) 

7) fucosidosis (+)

8) Pompe disease (-) 
Vici syndrome
Yunis-Varon syndrome
Danon disease 

9) aspartylglucosaminuria (+)

10) aspartylglucosaminuria (-) 

11) GM1 gangliosidosis (+)

12) GM2 gangliosidosis (+)
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MRMs were highly increased compared to controls, 
with 102 fold elevation in urine and 668 fold in DUS.

α‑Mannosidosis  Eight positive MRM transitions for 
the three mannosyl-OS, Hex2-HexNAc, Hex3-HexNAc 
and Hex4-HexNAc were selected as the most charac-
teristic, and 4 were used for quantitative analysis. We 
analyzed 2 urine samples and 3 DUS obtained from 2 
patients and all quantitative and qualitative MRMs were 
highly increased compared to controls, with a 110–118 
fold elevation in urines and 29–245 fold in DUS for the 
most characteristic transition.

β‑Mannosidosis  Nine positive and eight negative 
MRM transitions for Hex-HexNAc and its derivatives 
were selected as the most characteristic, and 5 were 
used for quantitative analysis. We analyzed 1 urine sam-
ple and 1 DUS from a patient and all quantitative and 
qualitative MRMs were highly increased compared to 
controls, with 720 fold elevation in urine and 155 fold in 
DUS for the most characteristic transition.

Fucosidosis  Six positive MRM transitions for the two 
fucosyl-OS, Fuc-HexNAc-Asn and Fuc-HexNAc2-Hex3, 
were selected as the most characteristic, and 3 were 
used for quantitative analysis. We studied 4 patients and 
analyzed 3 urine samples and 3 DUS and all quantitative 
and qualitative MRMs were highly increased compared 
to controls, with 220–470 fold elevation in urine and 
152–373 fold in DUS for the most characteristic transi-
tion.

Aspartylglucosaminuria  Five positive MRM transitions 
for aspartylglucosamine GlcN-Asn and the glycoasparagi-
nyl-OS Hex-HexNAc-Asn and ten negative MRMs transi-
tions for aspartylglucosamine GlcN-Asn and the glycoas-
paraginyl-OS NeuAc-Hex-HexNAc-Asn were selected 
as the most characteristic, and 3 positive and 3 negative 
MRMs were used for quantitative analysis. We studied 1 
patient with aspartylglucosaminuria and analyzed 1 urine 
sample and 1 DUS and all quantitative and qualitative 
MRMs were highly increased compared to controls, with 
71 fold elevation in urine and 80 fold in DUS for the most 
characteristic transition.

GM1 gangliosidosis  Five positive MRM transitions 
for the two galactosyl-OS, Hex3-HexNAc2 and Hex5-
HexNAc3 were selected as the most characteristic, and 3 
were used for quantitative analysis. We studied 7 patients 
and analyzed 14 urine samples and 4 DUS and all quanti-
tative and qualitative MRMs were highly increased com-
pared to controls, with 9–1160 fold elevation in urine and 
69–883 fold in DUS for the most characteristic transition.

GM2 gangliosidosis (Sandhoff & Tay‑Sachs dis‑
eases)  Seven positive MRM transitions for the three 
N-acetylglucosaminyl-OS, Hex2-HexNAc2, Hex3-
HexNAc3 and Hex3-HexNAc4 were selected as the most 
characteristic of GM2 gangliosidosis O variant (Sand-
hoff disease) and 4 were used for quantitative analysis. 
We studied 4 Sandhoff patients and analyzed 6 urine 
and 1 DUS. In all samples, quantitative and qualitative 
MRMs were highly increased compared to controls, with 
99–2102 fold elevation in urine and 79 fold in DUS for the 
most characteristic transition.

In the 3 patients with GM2 gangliosidosis B variant 
(Tay-Sachs disease) the OS analysis in urine and DUS did 
not display abnormalities.

Figure  3 shows the scatter charts of disorders pre-
senting an increased excretion of Glc4 which included, 
besides Pompe disease, also the autophagy related dis-
orders Vici and Yunis-Varon syndromes, and Danon 
disease.

Pompe disease (glycogen storage disease type II)  Two 
negative MRM transitions of the tetrasaccharide Glc4 
and of its isomer maltotetraose (M4) were selected as the 
most characteristic. We studied 3 untreated patients, two 
with infantile-onset and one with late-onset Pompe dis-
ease, and analyzed 4 urine and 2 DUS. Glc4 was increased 
compared to controls, with a 10–72 fold elevation in urine 
and 11–13 fold in DUS, respectively. Lower levels were 
detected in the patient with milder phenotype.

Vici syndrome  We studied 3 patients, one with the clas-
sic severe clinical picture and two sibs with a milder phe-
notype, and analyzed 4 urines and 3 DUS. The patient with 
the most severe variant showed an 21–28 fold increase of 
Glc4 in urine and an 18 fold increase in DUS, while the 

(See figure on next page.)
Fig. 2  Scatter charts of the most characteristic transitions in disorders showing specific OS profiles. The figure shows for each storage disorders 
the most characteristic MRM transitions in urine and DUS in comparison to controls: a sialidosis: transition 1200.4 > 1099.4 of the sialyl-OS 
NeuAc-Hex3HexNAc2; b α-mannosidosis: transition 568.2 > 347.2 of the mannosyl-OS NeuAc-Hex3HexNAc2; c fucosidosis: transition 504.2 > 289.2 
of the fucosyl-OS Fuc-HexNAc-Asn; d β-mannosidosis: transition 406 > 244 of Hex-HexNAc and derivatives; e aspartylglucosaminuria: transition 
520.2 > 305.2 of the GlcN-Asn + glycoasparaginyl-OS Hex-HexNAc-Asn; f GM1 gangliosidosis: transition 933.5 > 388.3 of the galactosyl-OS 
Hex3-HexNAc2; g GM2 gangliosidosis, Sandhoff type: transition 1136.3 > 933.4 of the N-acetylgalactosaminyl-OS Hex3-H; h GM2 gangliosidosis, 
Tay-Sachs type lacking the increase of the transition 1136.3 > 933.4 of the N-acetylgalactosaminyl-OS Hex3-HexNAc3 as seen in GM2 Sandhoff type
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two sibs with the less severe variant displayed only minor 
OS abnormalities both in urine and DUS and no elevation 
of Glc4.

Yunis‑Varon syndrome  The DUS sample from the 
patient with Yunis-Varon syndrome showed a 51 fold ele-
vation of Glc4.

Danon disease (Glycogen storage disease type II B)  We 
studied 1 patient with Danon disease and analyzed 1 urine 
and 1 DUS. Glc4 was increased compared to controls, 
with a 45 fold elevation in urine and 75 fold in DUS.

Disorders with a not‑specific OS profile
Mucolipidosis type II, and type III  We studied 2 patients 
with mucolipidosis type II and analyzed 3 urines and 1 
DUS. In all urine samples OS analysis revealed mixed 
non specific profiles with 8/8 positive transitions of 
α-mannosidosis and 5/5 positive transitions of GM1 gan-
gliosidosis.

We studied 2 patients with mucolipidosis type III 
and analyzed 2 urines and 2 DUS. In urine 5/5 positive 
MRM transitions of GM1 gangliosidosis were variably 
increased, however to a lesser extent than in GM1.

Mucopolysaccharidosis IVB  DUS from 5 patients were 
available and all samples displayed increased levels of Glc4 
however to a lesser extent than the positivity threshold.

Discussion
The diagnosis of storage disorders is often challeng-
ing due the presence of common clinical features and 
great variability in symptoms, and requires a complex 
approach which includes the analysis of target biomark-
ers in biological fluids, the measurement of enzymatic 
activities in leukocytes and/or fibroblasts and the con-
firmatory diagnosis by mutation analysis [20]. The avail-
ability of novel and specific therapies for a large number 
of diseases, including oligosaccharidoses, has increased 
the medical demand of reliable diagnostic techniques to 
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offer precise and timely diagnosis. For this purpose, we 
developed a new UHPLC-MS/MS method for the screen-
ing of OS in urine and in DUS. The method was applied 
to screen known samples of a large panel of storage dis-
orders and allowed to confirm the expected diagnoses 
(Table 2).

All examined oligosaccharidoses (i.e. sialidosis, α-/β-
mannosidosis, fucosidosis, aspartylglucosaminuria) and 
both GM1 and GM2 (Sandhoff type only) gangliosidosis 
displayed specific OS profiles, as shown by the presence 
of single or multiple qualifying and quantifying MRM 
transitions [4]. In other diseases, such as mucolipido-
sis type II-III, and mucopolysaccharidosis type IVB the 
analysis revealed abnormal (non-specific) OS excretion, 
with mixed patterns combining MRM transitions of dif-
ferent disorders. Each OS was identified through its spe-
cific MRM transitions in positive and in negative modes 
[4]. Given the chemical similarity, we included in the OS 
analysis also the negative MRM transition of Glc4, the 
urinary biomarker of Pompe disease [15, 17]. This imple-
mentation allowed to confirm the diagnosis of Pompe 
disease, with some variations in Glc4 excretion related to 
disease phenotypic severity.

Besides Pompe disease, Glc4 levels were mark-
edly increased also in three disorders belonging to 
the autophagy machinery [21–23]. These include Vici 
syndrome and Yunis-Varon syndrome, two diseases 

characterized by a complex multisystem phenotype, and 
Danon disease, a disorder with clinical manifestations 
very similar to Pompe disease [24–28]. As seen in glyco-
gen storage disorders, all these conditions share a cardio-
muscular involvement with increased glycogen storage 
and variable vacuoles accumulation detectable on light 
microscopy at the level of skeletal and cardiac muscle,. In 
previous studies on Yunis-Varon syndrome, abnormali-
ties of urinary OS by TLC analysis have been reported 
[18, 19]. However, given the technical limitation of this 
method, a precise identification of these compounds 
was missed in the original reports. Our UHPLC-MS/MS 
method confirmed a relevant increase of OS excretion in 
Yunis-Varon syndrome and allowed to identify Glc4 as 
the disease-target compound. As a novel finding, upon 
evaluation of samples from patients with Vici syndrome 
and Danon disaese we detected a striking increase of 
Glc4 in urine. The structural and pathogenetic similari-
ties with Pompe disease indicate that the increased uri-
nary excretion of Glc4 in these three autophagy-related 
disorders reflects the abnormal muscle glycogen break-
down [25, 26], as also seen in other muscle disorders 
causing glycogen storage such as GSD type 3 and 6 [15, 
29]. Glc4 could therefore serve as a biomarker to screen 
a wider range of storage disoders, including autophagy-
related diseases, presenting cardiomuscular sings with 
glycogen storage.

Table 2  List of storage disorders screened with the UHPLC-MS/MS method

Storage disorders Enzyme/protein deficiency Gene MIM number Characteristic oligosaccharides

Oligosaccharidoses

Sialidosis α-d-neuraminidase NEU1 608272 Sialyl-OS

α-Mannosidosis α-d-mannosidase MAN2B1 609458 Mannosyl-OS

β-Mannosidosis β-d-mannosidase MANBA 609489 Hex-HexNAc and derivates

Fucosidosis α-l-fucosidase FUCA1 612280 Fucosyl-OS

Aspatylglucosaminuria N-aspartyl-β-glucosaminidase AGA​ 613228 GlcN-Asn + glycoasparaginyl-OS

Sphingolipidoses

GM1-gangliosidosis β-d-galactosidase GLB1 611458 Galactosyl-OS

GM2-gangliosidosis O variant (Sandhoff ) Hexosaminidase A and B HEXB 606873 N-acetylgalacto saminyl-OS

GM2-gangliosidosis B variant (Tay-Sachs) Hexosaminidase A GM2A 613109 No abnormalities

Glycogen storage disorders

Pompe disease (Glycogenosis type II) Acid α-glucosidase GAA​ 606800 Glc4

Disoders of autophagy

Vici syndrome EPG5 EPG5 615068 Glc4

Yunis-Varon syndrome FIG4 FIG4 609390 Glc4

VAC 14 VAC14 604632

Danon disease (Glycogenosis type IIb) LAMP2 LAMP2 309060 Glc4

Mucolipidoses

Mucolipidosis type II & III N-acetylglucosamine-1-P-transferase GNPTAB 607840 Non-specific abnormalities

Mucopolisaccharidoses

Mucopolysaccharidosis IVB β-d-galactosidase GLB1 611458 Non-specific abnormalities
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From a technical perspective, most of recently reported 
methods using triple quadrupole for the analysis of OS 
require sample derivatization with 1-phenyl-3-methyl-
5-pyrazolone, making the preanalitycal phases of these 
methods time consuming [3, 8, 9]. Two MALDI-TOF/
TOF mass spectrometry methods, lacking internal 
standard, and suitable for disease screening have been 
reported [11, 12], with one not requiring sample derivati-
zation [12].

The advantages of our screening method for OS analy-
sis include a short preanalytical phase, not requiring sam-
ple derivatization, the use of UHPLC-MS/MS platform, a 
more widely available apparatus in diagnostic laborato-
ries than MALDI-TOF/TOF mass spectrometry, and the 
possibility to perform OS analysis in urine and DUS, with 
comparable diagnostic results, thus making simpler and 
easier sample shipment and storage. The chromatography 
was performed with a HILIC phase column, which was 
chosen for its ability to improve retention and selective 
separation of sugar-related compounds. Unlike the more 
commonly used aminic columns, the HILIC column 
showed an enhanced lifetime because of the stationary 
phase composed with highly robust and thermally modi-
fied fully porous particles. The gradient was optimized to 
obtain the elution of all compounds in about 15 min, with 
a residual 12  min for column reconditioning. The assay 
validation of the method in urine and DUS, showed that 
the correlation coefficient and the intra/inter-day preci-
sion of positive and negative MRM transitions were com-
parable in the two biological matrices. Moreover, in the 
control population, we noted that most of quantitative 
transitions showed significant differences for age below 
6 month (12) versus eldest age (63) (see Additional file 3).

For each MRM, results obtained in patients and con-
trols showed a clear separation of the two populations, 
both in urine and in DUS, without overlapping.

Conclusions
This new UHPLC/MS-MS method, not requiring sam-
ple derivatized and allowing the rapid and easy detection 
of OS in urine and DUS, expands the screening of stor-
age disorders from oligosaccharidoses to other diseases, 
including Pompe disease and the novel category of inher-
ited disorders of autophagy causing abnormal muscle gly-
cogen breakdown.
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